Numerical Prediction for Temperature Profile of Parts Manufactured using Fused Filament Fabrication
Article dans une revue avec comité de lecture
Author
Date
2022Journal
Journal of Manufacturing ProcessesAbstract
Bonding of parts produced by fused filament fabrication (FFF) significantly depends on the temperature profile of filaments depositing one top of each other. It is necessary to evaluate the temperature profile during fabrication of structures using both theoretical and experimental approaches. This work describes the overall heat transfer (using finite volume method) that exists in such a process by taking into account the possible phenomena that are developing during the manufacturing sequence: conduction between filaments, conduction between filament and support, and convection with the environment. Although the developed model is general and applicable to both amorphous and semi-crystalline polymers and/or composites, the recordings of temperature variation at the interface of adjacent filaments of a printed vertical wall of PLA illustrated good agreement by implementing very small K-type thermocouples in parallel. It is particularly concerning the occurrence of re-heating peaks during the deposition of new filaments onto previously deposited ones. The sensitivity of the developed code to the operating conditions is shown by variation of several parameters. This makes it easy to apply it for optimization purposes. Theoretical modeling and experimental data presented in this study help better understanding of heat transfer existing in polymer/composite additive manufacturing, and can be valuable to predict more accurately the bond quality and apply the obtained findings for further steps.
Files in this item
- Name:
- PIMM_ JMP_ 2022_TCHARKHTCHI-1.pdf
- Size:
- 4.212Mb
- Format:
- Embargoed until:
- 2022-10-01
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureVANAEI, Hamid Reza; RAISSI, Kaddour; SHIRINBAYAN, Mohammadali; TCHARKHTCHI, Abbas; DELIGANT, Michael; FITOUSSI, Joseph; KHELLADI, Sofiane (Springer Verlag, 2020)Abstract: Fused filament fabrication (FFF), which is an additive manufacturing technique, opens alternative possibilities for complex geometries fabrication. However, its use in functional products is limited due to ...
-
Article dans une revue avec comité de lectureVANAEI, Hamid Reza; SHIRINBAYAN, Mohammadali; TCHARKHTCHI, Abbas; DELIGANT, Michael; KHELLADI, Sofiane (MDPI AG, 2021)Fused filament fabrication (FFF), an additive manufacturing technique, unlocks alternative possibilities for the production of complex geometries. In this process, the layer-by-layer deposition mechanism and several heat ...
-
Article dans une revue avec comité de lectureVANAEI, Hamid Reza; SHIRINBAYAN, Mohammadali; RAISSI, Kaddour; TCHARKHTCHI, Abbas; DELIGANT, Michael; FITOUSSI, Joseph; KHELLADI, Sofiane (Wiley-Blackwell, 2020)Fused filament fabrication is considered one of the most used processes in additive manufacturing rapid prototypes out of polymeric material. Poor strength of the deposited layers is still one of the main critical problems ...
-
Article dans une revue avec comité de lectureVANAEI, Hamid Reza; SHIRINBAYAN, Mohammadali; COSTA, Sidonie Fernandes; DUARTE, Fernando Moura; COVAS, José António; TCHARKHTCHI, Abbas; DELIGANT, Michael; KHELLADI, Sofiane (Wiley, 2021)Fused filament fabrication (FFF) is an additive manufacturing technique that is used to produce prototypes and a gradually more important processing route to obtain final products. Due to the layer-by-layer deposition ...
-
Article dans une revue avec comité de lectureVANAEI, Hamid Reza; SHIRINBAYAN, Mohammadali; RAISSI, Kaddour; TCHARKHTCHI, Abbas; DELIGANT, Michael; FITOUSSI, Joseph; KHELLADI, Sofiane (Wiley, 2020)Fused filament fabrication (FFF), an additive manufacturing technique, is used to produce prototypes and a gradually more important processing route to get final products. Due to the layer-by-layer deposition mechanism ...