Modeling of Short Fiber Reinforced Polymer Composites Subjected to Multi‐block Loading
Article dans une revue avec comité de lecture
Date
2021Journal
Applied Composite MaterialsAbstract
Short Fiber Reinforced Composite (SFRC) structures exhibit multiple microstructures (due to material flow during the process). They are generally subjected to variable amplitude loadings. In this context, a robust model is needed to predict fatigue life as a function of microstructure. In this paper, we propose a predictive micromechanical damage-based model allowing fatigue life prediction in the case of SFRC submitted to variable amplitude cyclic loading. An experimental study was firstly performed on Sheet Molding Compound (SMC) composite involving different microstructure configurations. Specimens were sub-jected to stress-controlled block loading. The influence of the order of the sequences was evaluated through Low-High amplitude (L-H) and High-Low amplitude (H-L) schemes. Damage accumulation is computed at the local scale to describe the evolution of the fiber-matrix interface damage until failure. A local failure criterion based on a critical damage state allowed predicting variable amplitude fatigue life as a function of microstructure. A good correlation was found between experimental and numerical results. Once the approach was validated, it has been used to model different useful variable amplitude loading schemes to emphasize the role of the loading sequence parameters and order.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureLARIBI, Mohamad-Amine; TAMBOURA, Sahbi; SHIRINBAYAN, Mohammadali; BI, R.Tie; BEN DALI, Hachmi; TCHARKHTCHI, Abbas; FITOUSSI, Joseph (Elsevier, 2020)Because of the high variability of SMC microstructure due to material flow during thermoforming, fatigue life prediction in real automotive structure represents a huge challenge. In this paper, we present a two-step ...
-
Article dans une revue avec comité de lectureTAMBOURA, Sahbi; LARIBI, Mohamad-Amine; SHIRINBAYAN, Mohammadali; BI, R. Tie; BEN DALI, Hachmi; TCHARKHTCHI, Abbas; FITOUSSI, Joseph (Elsevier, 2020)The majority of fatigue life prediction models which have been proposed for the Short Fiber Reinforced Composite (SFRC) materials have been developed for constant temperature. However, in real situations, SFRC structures ...
-
Article dans une revue avec comité de lectureABDESSALEM, Abir; TAMBOURA, Sahbi; SHIRINBAYAN, Mohammadali; LARIBI, Mohamed-Amine; BEN DALY, Hachmi; FITOUSSI, Joseph (Elsevier BV, 2024-10)Industrial sheet molding compound (SMC) composite structures are susceptible to environmental degradation, primarily from moisture and temperature. Furthermore, these materials are subjected to fatigue loading. It is ...
-
Article dans une revue avec comité de lectureAYARI, Houssem; IMADDAHEN, Amine; TAMBOURA, Sahbi; SHIRINBAYAN, Mohammadali; BEN DALI, Hachmi; TCHARKHTCHI, Abbas; FITOUSSI, Joseph (Springer Verlag (Germany), 2020)To reinforce the environmental standards, we need to strengthen the lightening of vehicles and to generalize new composite materials in order to reduce weight. To use these innovative composite materials in the mass ...
-
Micromechanical Modelling of Dynamic Behavior of Advanced Sheet Molding Compound (A-SMC) Composite Article dans une revue avec comité de lectureAYARI, Houssem; SHIRINBAYAN, Mohammadali; IMADDAHEN, Amine; TAMBOURA, Sahbi; BEN DALY, Hachmi; TCHARKHTCHI, Abbas; FITOUSSI, Joseph (Springer Verlag (Germany), 2020)Passive safety, particularly in the transport industry, requires maximizing the dissipation of energy and minimizing the decelerations undergone by a vehicle following a violent impact (crash). This paper proposes a strategy ...