• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire de Mécanique des Fluides de Lille (LMFL)
  • View Item
  • Home
  • Laboratoire de Mécanique des Fluides de Lille (LMFL)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The ACONIT project: an innovative design approach of active flow control for surge prevention in gas turbines

Communication avec acte
Author
DAZIN, A
531216 Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet - UMR 9014 [LMFL]
JOSEPH, P
531216 Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet - UMR 9014 [LMFL]
ROMANO, F
531216 Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet - UMR 9014 [LMFL]
GALLAS, Q
531216 Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet - UMR 9014 [LMFL]
MARTY, J
1042308 ONERA, Université Paris Saclay [Meudon]
AIGOUY, G
465577 CEDRAT TECHNOLOGIES [CTEC]
STÔΒEL, M
1063032 Institute of Jet Propulsion, Bundeswehr University Munich
NIEHUIS, R
1063032 Institute of Jet Propulsion, Bundeswehr University Munich

URI
http://hdl.handle.net/10985/21875
DOI
10.1088/1757-899x/1024/1/012068
Date
2021-01-22

Abstract

The objective of the ACONIT project is to design, manufacture and test actuators for flow control for an implantation in an aircraft engine. The actuators will fulfil aeronautics requirement in order to increase the Technology Readiness Level (TRL) in this domain. In particular, for the present proposal, one plans to focus on the extension of the stable operating range of axial compressor, allowing thus a reduction of the surge margin through postponing the stall onset. To do so, the first objective of the work is to improve the knowledge of the flow physics of an efficient flow control system by joint numerical and experimental analyses performed in a low speed, single stage axial compressor. The results of this analysis will be used to derive the fluidic specifications for high-TRL actuators and control systems. These specifications will be the base for the design and manufacturing of amplified piezo-electric actuator prototypes whose fluidic performance and operational performance in an environment with vibration and controlled level of temperature will be precisely evaluated before manufacturing final actuators that will be integrated in a full-scale engine test facility. Their performance will be evaluated in terms of Surge Margin Improvement (SMI) as well as in terms of energy balance between the induced consumption and the machine performance improvements. The consortium grouped for carrying out this project is composed of a SME (CTEC), two academic institutions (Bundeswehr University Munich and ENSAM) and a Research Centre (ONERA). It groups skills ranging from internal flow analysis in turbomachinery, to flow control or actuators design, manufacturing and characterisations.

Files in this item

Name:
LMFL_EASN_2020_DAZIN.pdf
Size:
1.023Mb
Format:
PDF
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire de Mécanique des Fluides de Lille (LMFL)

Related items

Showing items related by title, author, creator and subject.

  • Experimental and Numerical Analysis of a Compressor Stage under Flow Distortion 
    Article dans une revue avec comité de lecture
    BARETTER, Alberto; GODARD, Benjamin; JOSEPH, Pierric; ROUSSETTE, Olivier; ROMANÒ, Francesco; BARRIER, Raphael; DAZIN, Antoine (MDPI AG, 2021)
    On many occasions, fan or compressor stages have to face azimuthal flow distortion at inlet, which affects their performance and stability. These flow distortions can be caused by external events or by some particular ...
  • Experimental Analysis of an Axial Compressor Operating under Flow Distorsion 
    Communication avec acte
    BARETTER, Alberto; JOSEPH, Pierric; ROUSSETTE, Olivier; ROMANO, Francesco; DAZIN, Antoine (ASME, 2022-06)
    In aircraft engines, compressor stages can encounter situations in which the flow is distorted at rotor inlet, for example during particular flight maneuvers, or due to the shape of the inlet of the airframe. The main ...
  • Numerical Investigations on the Rotating Stall in an Axial Compressor and its Control by Flow Injection at Casing 
    Communication avec acte
    MARTY, Julien; CASTILLON, Lionel; JOSEPH, Pierric (ASME, 2022-06)
    The operating range of a compressor is limited by surge or rotating stall line, among others. Numerical simulations must accurately predict these phenomena. This study is based on the experimental compressor CME2, which ...
  • Stall Margin Improvement in an Axial Compressor by Continuous and Pulsed Tip Injection 
    Article dans une revue avec comité de lecture
    MOUBOGHA MOUBOGHA, Joseph; MARGALIDA, Gabriel; JOSEPH, Pierric; ROUSSETTE, Olivier; DAZIN, Antoine (MDPI AG, 2022-03)
    Stall and surge are strong limitations in the operating range of compressors and thus one of the major limits of jet engine performance. A promising way to push the stability limit of compression machines is to inject a ...
  • Experimental Flow Investigation Inside an Axial Compressor with Active Flow Control 
    Communication avec acte
    MOUBOGHA MOUBOGHA, Joseph; JOSEPH, Pierric; ROUSSETTE, Olivier; DAZIN, Antoine (ASME, 2022-06)
    This paper describes the experimental study of the flow behavior in a rotor blade channel of an axial compressor equipped with an Active Flow Control (AFC) system using Particle Image Velocimetry. The AFC system consists ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales