• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • Voir le document
  • Accueil de SAM
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modularity-based quality assessment of a disruptive reconfigurable manufacturing system-A hybrid meta-heuristic approach

Article dans une revue avec comité de lecture
Auteur
KHAN, Abdul Salam
ccSIADAT, Ali
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccDANTAN, Jean-Yves
ccHOMRI, Lazhar

URI
http://hdl.handle.net/10985/22198
DOI
10.1007/s00170-021-07229-6
Date
2021
Journal
The International Journal of Advanced Manufacturing Technology

Résumé

This study considers quality aspects in the process planning of a reconfigurable manufacturing system. The goal is to analyze how the variation in quality impacts the process planning, i.e., cost-based design and modular features. Besides this, the analysis helps in identifying the number of conforming and failed products delivered by a process plan. First, a multi-objective mixed integer non-linear programming model is proposed that contains the novel objectives of cost, quality decay, and modular efforts. Secondly, the model is implemented on an industrial case study by using an exact solution approach and a novel hybrid version of two popular meta-heuristics, namely non-sorting genetic algorithm and multi-objective particle swarm optimization. The hybrid heuristic helps strengthening the application of approaches by creating a balance in searching the solution space. The performance of different approaches is assessed by using two metrics and two termination criteria. The findings will help the decisionmakers in assessing how quality-related issues impact the choice of a process plan and in understanding the trade-off among cost, quality, and modularity. Finally, conclusion and future research avenues are provided.

Fichier(s) constituant cette publication

Nom:
LCFC_IJAMT_2021_KHAN.pdf
Taille:
2.897Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire de Conception Fabrication Commande (LCFC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Development of a flexible data management system, to implement predictive maintenance in the Industry 4.0 context 
    Article dans une revue avec comité de lecture
    CIANCIO, Vincent; ccHOMRI, Lazhar; ccDANTAN, Jean-Yves; ccSIADAT, Ali (Taylor&Francis, 2023-06)
    In recent years, the way that maintenance is carried out has evolved due to the incorporation of digital tools and Industry 4.0 concepts. By connecting to and communicating with their production system, companies can now ...
  • Modular cost model for Tolerance allocation, Process selection and Inspection planning 
    Article dans une revue avec comité de lecture
    ccDANTAN, Jean-Yves; ccETIENNE, Alain; MOHAMMADI, Mehrdad; KHEZRI, Amirhossein; ccHOMRI, Lazhar; TAVAKKOLI-MOGHADDAM, Reza; ccSIADAT, Ali (Elsevier, 2022)
    The need for highly reliable and precise products has forced industries to study potential uncertainties during designing needed parts. The reliability and acceptance of the product rely on several factors and tolerancing ...
  • Probabilistic-based approach using Kernel Density Estimation for gap modeling in a statistical tolerance analysis 
    Article dans une revue avec comité de lecture
    GOKA, Edoh; BEAUREPAIRE, Pierre; ccDANTAN, Jean-Yves; ccHOMRI, Lazhar (Elsevier, 2019)
    The statistical tolerance analysis has become a key element used in the design stage to reduce the manufacturing cost, the rejection rate and to have high quality products. One of the frequently used methods is the Monte ...
  • Geometrical variations management for additive manufactured product 
    Article dans une revue avec comité de lecture
    HUANG, Zhicheng; GOKA, Edoh; BONNET, Nicolas; ccDANTAN, Jean-Yves; ccETIENNE, Alain; ccHOMRI, Lazhar; ccRIVETTE, Mickaël (Elsevier, 2017)
    Additive manufacturing (AM) became an advanced research topic due to its ability to manufacture complex shapes. But the ability to achieve predictable and repeatable shapes is critical. Therefore, to optimize the design ...
  • Enhancing Fault Diagnosis in Process Industries with Internal Variables of Model Predictive Control 
    Article dans une revue avec comité de lecture
    ccDIALLO, Abdoul Rahime; HOMRI, Lazhar; ccDANTAN, Jean-Yves; BONNET, Frédéric; BOEUF, Thomas (Elsevier BV, 2024-08)
    This paper introduces the use of internal variables, estimated through Model Predictive Control (MPC), for fault detection and diagnosis in process industries. To do so, a data-driven methodology is proposed. Three ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales