Prediction of the compressive damage response of flax-reinforced laminates using a mesoscale framework
Article dans une revue avec comité de lecture
Author
Date
2021-01Journal
Composites Part A: Applied Science and ManufacturingAbstract
Compressive mechanical testing was performed on continuous fiber Flax/Epoxy laminate specimens, capturing, and quantifying its evolving in-plane plasticity and moduli. This non-linear behaviour was simulated using a modified continuum damage mechanics-based model. The standard Mesoscale Damage Theory (MDT) of Lade veze and Le Dantec was modified to include fiber-direction damage and plasticity evolution constitutive equations in order to capture the non-linear behavior observed in Natural Fiber Composites (NFCs). The model parameters were experimentally identified and optimized. Validations have been performed on Flax/Epoxy laminates of various fiber orientations, as well as on E-Glass/Polyester using data from available literature. The
proposed model successfully predicts the NFCs nonlinear compressive mechanical response. It is a robust predictive tool to aid engineers and designers in the development of load-bearing biomaterial-reinforced composites.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureARIF, Muhamad Fatikul; MERAGHNI, Fodil; CHEMISKY, Yves; DESPRINGRE, Nicolas; ROBERT, Gilles (Elsevier, 2014)Damage mechanisms of injection molded polyamide-66/short glass fiber 30 wt% composite (PA66/GF30) were analyzed using in situ SEM mechanical tests on specimens conditioned under three relative humidity contents (RH = 0%, ...
-
Article dans une revue avec comité de lectureACHOUR, Nadia; CHATZIGEORGIOU, George; MERAGHNI, Fodil; CHEMISKY, Yves; FITOUSSI, Joseph (Elsevier, 2015)In this work, the phenomenological viscoplastic DSGZ model (Duan et al., 2001 [13]), developed for glassy or semi-crystalline polymers, is numerically implemented in a three-dimensional framework, following an implicit ...
-
Article dans une revue avec comité de lectureNONY-DAVADIE, Clément; PELTIER, Laurent; CHEMISKY, Yves; SUROWIEC, Benjamin; MERAGHNI, Fodil (SAGE Publications, 2019)The paper presents an experimental analysis of the anisotropic effects of the structural advanced carbon fiber sheet molding compound composites (AC-SMCs) subjected to quasi-static and fatigue loading. Two configurations ...
-
Communication avec acteCHATZIGEORGIOU, George; CHENG, Long; CHEMISKY, Yves; MERAGHNI, Fodil (2018)The present work proposes a 3D model, based on the thermodynamical coupling of different strain mechanisms such as the forward and reverse phase transformation, the martensitic reorientation, the transformation-introduced ...
-
Conférence invitéeCHATZIGEORGIOU, George; CHENG, Long; CHEMISKY, Yves; MERAGHNI, Fodil (Scheven Malte von; Keip Marc-André; Karajan Nils, 2017)Shape memory alloys (SMAs) are exploited in several innovative applications such as biocompatible actuators experiencing up to large number of cyclic loads. However, the description of the SMA cyclic response is still ...