Prediction of the compressive damage response of flax-reinforced laminates using a mesoscale framework
Article dans une revue avec comité de lecture
Author
Date
2021-01Journal
Composites Part A: Applied Science and ManufacturingAbstract
Compressive mechanical testing was performed on continuous fiber Flax/Epoxy laminate specimens, capturing, and quantifying its evolving in-plane plasticity and moduli. This non-linear behaviour was simulated using a modified continuum damage mechanics-based model. The standard Mesoscale Damage Theory (MDT) of Lade veze and Le Dantec was modified to include fiber-direction damage and plasticity evolution constitutive equations in order to capture the non-linear behavior observed in Natural Fiber Composites (NFCs). The model parameters were experimentally identified and optimized. Validations have been performed on Flax/Epoxy laminates of various fiber orientations, as well as on E-Glass/Polyester using data from available literature. The
proposed model successfully predicts the NFCs nonlinear compressive mechanical response. It is a robust predictive tool to aid engineers and designers in the development of load-bearing biomaterial-reinforced composites.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Mesoscale modelling of tensile response and damage evolution in natural fibre reinforced laminates Article dans une revue avec comité de lectureA continuum damage mechanics based mesoscale model is developed within a thermodynamics framework to describe the in-plane tensile response in natural fibre composites. The standard Mesoscale Damage Theory (MDT) is modified ...
-
Conférence invitéeBOUGHERARA, Habiba; EL SAWI, Ihab; FAWAZ, Zouheir; MERAGHNI, Fodil (Ibrahim Karaman, Raymundo Arróyave and Eyad Masad, 2015)The main objective of this preliminary investigation is to identify and characterize the damage evolution of angle ply ([±45] 16 ) flax-reinforced epoxy composites using an energy-based damage model combined with Scanning ...
-
Article dans une revue avec comité de lectureACHOUR, Nadia; CHATZIGEORGIOU, George; CHEMISKY, Yves; FITOUSSI, Joseph; MERAGHNI, Fodil (Elsevier, 2015)In this work, the phenomenological viscoplastic DSGZ model (Duan et al., 2001 [13]), developed for glassy or semi-crystalline polymers, is numerically implemented in a three-dimensional framework, following an implicit ...
-
Conférence invitéeDans ce travail, un modèle micromécanique établi sur le principe de l’homogénéisation périodique est utilisé pour décrire le comportement macroscopique des composites à matrice thermoplastique sous chargements cycliques ...
-
Article dans une revue avec comité de lectureCHATZIATHANASIOU, Dimitris; CHEMISKY, Yves; CHATZIGEORGIOU, George; PATOOR, Etienne; MERAGHNI, Fodil (Springer, 2015)In the present study, a new transformation criterion that includes the effect of tension–compression asymmetry and texture-induced anisotropy is proposed and combined with a thermodynamical model to describe the thermomechanical ...