• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
  • Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinear stochastic modelling with Langevin regression

Article dans une revue avec comité de lecture
Auteur
CALLAHAM, J. L.
545712 Department of Mechanical Engineering [University of Washington]
300433 University of Washington [Seattle]
RIGAS, G.
1063559 Department of Aeronautics, Imperial College London
BRUNTON, S. L.
300433 University of Washington [Seattle]
545712 Department of Mechanical Engineering [University of Washington]
ccLOISEAU, Jean-Christophe
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/23069
DOI
10.1098/rspa.2021.0092
Date
2021-06
Journal
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences (RSPA)

Résumé

Many physical systems characterized by nonlinear multiscale interactions can be modelled by treating unresolved degrees of freedom as random fluctuations. However, even when the microscopic governing equations and qualitative macroscopic behaviour are known, it is often difficult to derive a stochastic model that is consistent with observations. This is especially true for systems such as turbulence where the perturbations do not behave like Gaussian white noise, introducing non-Markovian behaviour to the dynamics. We address these challenges with a framework for identifying interpretable stochastic nonlinear dynamics from experimental data, using forward and adjoint Fokker–Planck equations to enforce statistical consistency. If the form of the Langevin equation is unknown, a simple sparsifying procedure can provide an appropriate functional form. We demonstrate that this method can learn stochastic models in two artificial examples: recovering a nonlinear Langevin equation forced by coloured noise and approximating the second-order dynamics of a particle in a double-well potential with the corresponding first-order bifurcation normal form. Finally, we apply Langevin regression to experimental measurements of a turbulent bluff body wake and show that the statistical behaviour of the centre of pressure can be described by the dynamics of the corresponding laminar flow driven by nonlinear state-dependent noise.

Fichier(s) constituant cette publication

Nom:
DYNFLUID_RSPA_2021_LOISEAU.pdf
Taille:
2.267Mo
Format:
PDF
Description:
Nonlinear stochastic modelling ...
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Dynamique des Fluides (DynFluid)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • An empirical mean-field model of symmetry-breaking in a turbulent wake 
    Article dans une revue avec comité de lecture
    CALLAHAM, Jared L.; RIGAS, Georgios; ccLOISEAU, Jean-Christophe; BRUNTON, Steven L. (2022-05-11)
    Improved turbulence modeling remains a major open problem in mathematical physics. Turbulence is notoriously challenging, in part due to its multiscale nature and the fact that large-scale coherent structures cannot be ...
  • PySINDy: A comprehensive Python package for robust sparse system identification 
    Article dans une revue avec comité de lecture
    KAPTANOGLU, Alan; DE SILVA, Brian; FASEL, Urban; KAHEMAN, Kadierdan; GOLDSCHMIDT, Andy; CALLAHAM, Jared; DELAHUNT, Charles; NICOLAOU, Zachary; CHAMPION, Kathleen; KUTZ, J.; BRUNTON, Steven; ccLOISEAU, Jean-Christophe (The Open Journal, 2022-01)
    Automated data-driven modeling, the process of directly discovering the governing equations of a system from data, is increasingly being used across the scientific community. PySINDy is a Python package that provides tools ...
  • On the role of nonlinear correlations in reduced-order modelling 
    Article dans une revue avec comité de lecture
    CALLAHAM, Jared L.; BRUNTON, Steven L.; ccLOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2022-03)
    This work investigates nonlinear dimensionality reduction as a means of improving the accuracy and stability of reduced-order models of advection-dominated flows. Nonlinear correlations between temporal proper orthogonal ...
  • Sparse reduced-order modelling: sensor-based dynamics to full-state estimation 
    Article dans une revue avec comité de lecture
    NOACK, Bernd R.; BRUNTON, Steven L.; ccLOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2018)
    We propose a general dynamic reduced-order modelling framework for typical experimental data: time-resolved sensor data and optional non-time-resolved particle image velocimetry (PIV) snapshots. This framework can be ...
  • Constrained sparse Galerkin regression 
    Article dans une revue avec comité de lecture
    BRUNTON, Steven L.; ccLOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2018)
    The sparse identification of nonlinear dynamics (SINDy) is a recently proposed data-driven modelling framework that uses sparse regression techniques to identify nonlinear low-order models. With the goal of low-order models ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales