Combination of mean-field micromechanics and cycle jump technique for cyclic response of PA66/GF composites with viscoelastic–viscoplastic and damage mechanisms
Article dans une revue avec comité de lecture
Date
2023-01Journal
Acta MechanicaRésumé
An accelerated micromechanics framework based on the extended Mori–Tanaka transformation field analysis (TFA) and cycle jump technique is proposed to predict the homogenized response of short glass fiber-reinforced polyamide 66 composites (PA66/GF) under a large number of loading cycles (> 100,000 cycles). The extended theory accounts for microscopic viscoelastic–viscoplastic and damage mechanisms, and realistic microstructures induced by the injection molding process. Toward this end, a number of training cycles are first conducted using the extended Mori–Tanaka TFA to obtain the global evolution functions of material state-dependent variables (SDVs) for each phase. These SDVs are extrapolated linearly to a certain jump length with the help of global evolution functions such that direct numerical simulation of the cycles during this interval can be skipped, leading to a large computational cost reduction. After the cycle jump, a set of complete cycles are performed based on the extrapolated SDVs using the Mori–Tanaka TFA simulation to re-establish the global evolution functions. The implementation of the cycle jump procedure is facilitated by introducing an extrapolation control function to allow adaptive jump size control as well as to minimize the extrapolating error. The capabilities of the extended theory with the cycle jump technique have been validated extensively vis-à-vis cycle-by-cycle benchmark calculations under various loading conditions. It has been further verified with the experimental results of actual PA66/GF composites under high-cycle loading beyond which the cycle-by-cycle simulations can achieve.
Fichier(s) constituant cette publication
- Nom:
- LEM3_ACTAMECH_2023_MERAGHNI.pdf
- Taille:
- 4.384Mo
- Format:
- Fin d'embargo:
- 2023-07-01
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureIn this paper, an original probabilistic micromechanics damage framework involving multi-deformation mechanisms, based on the modified Mori-Tanaka and Transformation Field Analysis (MT-TFA) techniques, is developed to ...
-
Communication avec acteCHEN, Qiang; CHATZIGEORGIOU, George; ROBERT, Gilles; MERAGHNI, Fodil (Association pour les MAtériaux Composites (AMAC), 2023-07)This work proposes a probabilistic micromechanics damage framework to predict the uniaxial and cyclic stress-strain response and progressive damage in random glass-reinforced polyamide composites. Motivated by different ...
-
Article dans une revue avec comité de lectureDU, Xiaoxiao; CHEN, Qiang; CHATZIGEORGIOU, George; MERAGHNI, Fodil; ZHAO, Gang; CHEN, Xuefeng (Elsevier BV, 2024-08)An isogeometric homogenization (IGH) technique is constructed for the homogenization and localization of unidirectional composites with radially or circumferentially orthotropic carbon/graphite fibers. The proposed theory ...
-
Article dans une revue avec comité de lectureIn this contribution, a probabilistic micromechanics damage framework is presented to predict the macroscopic stress-strain response and progressive damage in unidirectional glass-reinforced thermoplastic polymer composites. ...
-
Article dans une revue avec comité de lectureA new hybrid homogenization approach is proposed for simulating the homogenized and local response of unidirectional fuzzy fiber nanocomposites undergoing inelastic deformations. Fuzzy fiber composites are hierarchical ...