• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physics-informed machine learning prediction of the martensitic transformation temperature for the design of “NiTi-like” high entropy shape memory alloys

Article dans une revue avec comité de lecture
Author
ccTHIERCELIN, Léo
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccPELTIER, Laurent
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccMERAGHNI, Foudil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/24422
DOI
10.1016/j.commatsci.2023.112578
Date
2024-01
Journal
Computational Materials Science

Abstract

The present study proposes a physics-informed machine learning (PIML) algorithm-based approach aimed at predicting the martensitic transformation temperature (Ms) for the design of “NiTi-like” high entropy shape memory alloys (HESMAs). A previously established HESMAs database is enriched and extended to include bi­nary, ternary, quaternary, quinary and senary alloys containing the most employed alloying elements for HEAs design such as Ni equivalents (Fe, Cu, Co, Pd, Pt and Au), Ti equivalents (Zr and Hf), Nb and Ta. The Extremely Randomized Trees algorithm, based on the concept of multiple random decision tree predictions, is adopted as the regression method for Ms temperature prediction. Two strategies for the algorithm inputs have been adopted, discussed, and compared in terms of reliable predictions. The first relies on the composition of the alloying el­ements, whereas the second exploits a defined set of intrinsic material descriptors. The latter are based on mixing enthalpy, atomic radius, electronegativity, atomic number and number of elements. A high accuracy of the M S prediction has been reached when considering the material descriptors. In fact, the second strategy induces a mean absolute error that is less than 30C for alloys containing up to 4 elements. For more elements there are more discrepancies due to the homogenization state required for HEAs. The validation of the developed approach has been performed using 6 home-made HESMAs prepared specifically for this study. It demonstrated the pre­dictive capabilities of the developed physics-informed machine learning based approach. Finally, a HESMA design tool has been implemented to virtually design new HESMAs with a targeted Ms temperature above 400C. It is worth noting that this aspect is one of the most challenging engineering issues for such alloys. An illustrative case applied to the (NiCuPd) 50 (TiZr) 50 family of alloys demonstrates the predictive capabilities of the developed approach to design such alloys to achieve a Ms temperature in the range of 300C to 700C.

Files in this item

Name:
LEM3_CMS_2024_MERAGHNI.pdf
Size:
11.76Mb
Format:
PDF
Embargoed until:
2024-07-01
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Mechanical characterization of anisotropy on a carbon fiber sheet molding compound composite under quasi-static and fatigue loading 
    Article dans une revue avec comité de lecture
    NONY-DAVADIE, Clément; PELTIER, Laurent; CHEMISKY, Yves; SUROWIEC, Benjamin; MERAGHNI, Fodil (SAGE Publications, 2019)
    The paper presents an experimental analysis of the anisotropic effects of the structural advanced carbon fiber sheet molding compound composites (AC-SMCs) subjected to quasi-static and fatigue loading. Two configurations ...
  • optimized aerodinamic insert for a vehicle wheel 
    Brevet
    PELTIER, Laurent; MERAGHNI, Fodil; PALPACUER, Eric (WIPO, 2022-06)
    optimized aerodinamic insert for a vehicle wheel
  • Insert à l'aérodynamique optimisée pour une roue de véhicule 
    Brevet
    PELTIER, Laurent; MERAGHNI, Fodil; PALPACUER, Eric (INPI, 2022-06)
    Insert à l'aérodynamique optimisée pour une roue de véhicule
  • Design, Characterization, and Finite-Element Optimization of a Two-Way Assisted Through SuperElasticity Torsion Actuator 
    Article dans une revue avec comité de lecture
    SLEIGHT, Matthew; PELTIER, Laurent; PIOTROWSKI, Boris; MERAGHNI, Fodil (Springer Science and Business Media LLC, 2022-10)
    The present study aims at developing a new Shape Memory Alloy (SMA) autonomous torsion actuator that exhibits Two-Way reversible memory effect Assisted by SuperElasticity. The developed actuator noted hereafter TWASE ...
  • A General Damage Accumulation Model for Multiaxial, Proportional High Cycle Fatigue Loadings With Sines, Crossland and Dang Van Criteria 
    Article dans une revue avec comité de lecture
    GHAZAVIZADEH, Akbar; MERAGHNI, Fodil; PELTIER, Laurent; BOURGEOIS, Nadine (American Society of Mechanical Engineers, 2019)
    In this paper, a key differential equation is proposed to formulate fatigue damage evolution in metallic alloys under multiaxial, multiblock, proportional loadings in high cycle fatigue (HCF) and very high cycle fatigue ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales