• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire de Mécanique des Fluides de Lille (LMFL)
  • View Item
  • Home
  • Laboratoire de Mécanique des Fluides de Lille (LMFL)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MaranStable: A linear stability solver for multiphase flows in canonical geometries

Article dans une revue avec comité de lecture
Author
STOJANOVIĆ, Mario
19098 Vienna University of Technology = Technische Universität Wien [TU Wien]
ccROMANO, Francesco
531216 Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet [LMFL]
KUHLMANN, Hendrik C.
19098 Vienna University of Technology = Technische Universität Wien [TU Wien]

URI
http://hdl.handle.net/10985/24504
DOI
10.1016/j.softx.2023.101405
Date
2023-07
Journal
SoftwareX

Abstract

MaranStable is a software to perform three-dimensional linear stability analyses of steady two-dimensional non-isothermal multiphase flows in canonical geometries. Different approximations to the Navier–Stokes equations can be selected, which are discretized by finite volumes on a staggered grid. The stability of the basic flow, obtained by Newton—Raphson iteration, is computed by solving the linearized three-dimensional perturbation equations using normal modes. All calculations are based on Matlab and make extensive use of the already parallelized backslash and eigs operators, and the graphical user interface eases the access to MaranStable.

Files in this item

Name:
LMFL_SoftwareX_2023_ROMANO.pdf
Size:
902.0Kb
Format:
PDF
Description:
LMFL_SoftwareX_2023_ROMANO
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire de Mécanique des Fluides de Lille (LMFL)

Related items

Showing items related by title, author, creator and subject.

  • Stability of thermocapillary flow in liquid bridges fully coupled to the gas phase 
    Article dans une revue avec comité de lecture
    STOJANOVIĆ, Mario; ccROMANO, Francesco; KUHLMANN, Hendrik C. (Cambridge University Press (CUP), 2022-09)
    The linear stability of the axisymmetric steady thermocapillary flow in a liquid bridge made from 2 cSt silicone oil (Prandtl number 28) is investigated numerically in the framework of the Boussinesq approximation. The ...
  • Instability of axisymmetric flow in thermocapillary liquid bridges: Kinetic and thermal energy budgets for two-phase flow with temperature-dependent material properties 
    Article dans une revue avec comité de lecture
    STOJANOVIĆ, Mario; ccROMANO, Francesco; KUHLMANN, Hendrik C. (Cambridge University Press (CUP), 2023-07)
    In numerical linear stability investigations, the rates of change of the kinetic and thermal energy of the perturbation flow are often used to identify the dominant mechanisms by which kinetic or thermal energy is exchanged ...
  • Lagrangian chaos in steady three-dimensional lid-driven cavity flow 
    Article dans une revue avec comité de lecture
    ccROMANO, Francesco; TÜRKBAY, Tuǧçe; KUHLMANN, Hendrik C. (AIP Publishing, 2020-07)
    Steady three-dimensional flows in lid-driven cavities are investigated numerically using a high-order spectral-element solver for the incompressible Navier–Stokes equations. The focus is placed on critical points in the ...
  • Finite-size coherent particle structures in high-Prandtl-number liquid bridges 
    Article dans une revue avec comité de lecture
    BARMAK, Ilya; ccROMANO, Francesco; KUHLMANN, Hendrik C. (American Physical Society (APS), 2021-08)
    The transport of liquid and of small rigid spherical particles in a high-Prandtl-number (Pr = 68) thermocapillary liquid bridge under zero gravity is studied by highly resolved numerical simulations when the flow arises ...
  • Attractors for the motion of a finite-size particle in a two-sided lid-driven cavity 
    Article dans une revue avec comité de lecture
    WU, Haotian; ccROMANO, Francesco; KUHLMANN, Hendrik C. (Cambridge University Press (CUP), 2020-11)
    The motion of a single spherical particle in a two-sided lid-driven cavity is investigated experimentally. The flow in which the particle moves is created by two facing cavity sidewalls which move with equal velocity in ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales