Extensional Viscosity of Immiscible Polymer Multi-Nanolayer Films: Signature of the Interphase
Article dans une revue avec comité de lecture
Author
Date
2023Journal
MacromoleculesAbstract
The measurement of interfacial mechanical or rheological properties in polymer blends is a challenging task, as well as providing a quantitative link between these properties and the interfacial nanostructure. Here, we perform a systematic study of the extensional rheology of multilayer films of an immsicible polymer pair, polystyrene and poly(methyl methacrylate). We take advantage of multinanolayer coextrusion to increase the number of interfaces up to thousands, consequently magnifying the interfacial response of the films. The transient elongational response is compared to an addivity rule model based on the summation of the contribution of each polymer as well as the interfacial one. At low strain rates, the model reproduces the transient extensional viscosity up to strain-thinning, while at larger ones, the extra stress exceeds the prediction based on constant interfacial tension. This extra-contribution is attributed to an interphase modulus on the order of 1-10 MPa, which increases with strain rate following a power-law with an exponent 1/3. Extensional rheology of multinanolayer films is then an efficient combination to go beyond interfacial tension and measure quantitatively the interfacial rheology of immiscible polymer blends.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureDMOCHOWSKA, Anna; PEIXINHO, Jorge; SOLLOGOUB, Cyrille; MIQUELARD-GARNIER, Guillaume (American Chemical Society (ACS), 2022-04-01)An experimental investigation is reported on the effect of shear on the bursting of molten ultrathin polymer films embedded in an immiscible matrix. By use of an optical microscope coupled with a shearing hot stage, the ...
-
Article dans une revue avec comité de lectureRAVICHANDRAN, Dharneedar; DMOCHOWSKA, Anna; SUNDARAVADIVELAN, Barath; THIPPANNA, Varunkumar; MOTTA DE CASTRO, Emile; PATIL, Dhanush; RAMANATHAN, Arunachalam; ZHU, Yuxiang; SOBCZAK, M. Taylor; ASADI, Amir; PEIXINHO, Jorge; MIQUELARD-GARNIER, Guillaume; SONG, Kenan (Royal Society of Chemistry (RSC), 2024-06)Carbon–carbon (C–C) composites are highly sought-after in aviation, automotive, and defense sectors due to their outstanding thermal and thermo-mechanical properties. These composites are highly valued for their exceptional ...
-
Article dans une revue avec comité de lectureSUNDARAVADIVELAN, Barath; RAVICHANDRAN, Dharneedar; DMOCHOWSKA, Anna; PATIL, Dhanush; THUMMALAPALLI, Sri Vaishnavi; RAMANATHAN, Arunachalam; PEIXINHO, Jorge; MIQUELARD-GARNIER, Guillaume; SONG, Kenan (American Chemical Society (ACS), 2024-05)Coal, a crucial natural resource traditionally employed for generating carbonrich materials and powering global industries, has faced escalating scrutiny due to its adverse environmental impacts outweighing its utility in ...
-
Article dans une revue avec comité de lectureDHALIWAL, Vira; PEDERSEN, Christian; KADRI, Kheireddin; MIQUELARD-GARNIER, Guillaume; SOLLOGOUB, Cyrille; PEIXINHO, Jorge; SALEZ, Thomas; CARLSON, Andreas (American Physical Society (APS), 2024-02)Liquid nanofilms are ubiquitous in nature and technology, and their equilibrium and out-of-equilibrium dynamics are key to a multitude of phenomena and processes. We numerically study the evolution and rupture of viscous ...
-
Article dans une revue avec comité de lectureKADRI, Kheireddin; PEIXINHO, Jorge; SALEZ, Thomas; MIQUELARD-GARNIER, Guillaume; SOLLOGOUB, Cyrille (Elsevier BV, 2021)The objective of this work is to give new insight into the stability of thin polymer films under shear, in order to pave the way to a better control of the nanolayer coextrusion process. To do so, a finite-difference ...