• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

AI-based Text Generation for Semantic Search Robustness : Application to Defence

Communication avec acte
Author
FENDZI, Claude
1189000 Airbus Defence and Space [Elancourt]
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
CARRON, Bruno
1189000 Airbus Defence and Space [Elancourt]
GADEK, Guillaume
1189000 Airbus Defence and Space [Elancourt]

URI
http://hdl.handle.net/10985/25003
Date
2023-11

Abstract

One of the biggest challenges in successfully applying Artificial Intelligence (AI) in the Defense sector is the availability of trustful domain specific data to train AI models on. These data have to be generated and collected from the real world or acquired through realistic scenarios simulations and validated by operation specialists or domain experts. In real world applications, most of the time these data are classified and difficult to access. Then only a handful coming either from unclassified documents or simulation / realistic scenarios can be made available. In this article, we discuss how Generative AI can be used to generate intelligence-oriented textual data that are semantically similar to a “ground truth” database. The methodology is applied in the frame of the EDIDP AI4DEF project, focusing on one of the use cases, Request for Information (RFI) semantic similarity detection in a database. We expose how a limited corpus has been enriched with noisy AI-generated data. The performances and the robustness of the AI model have been monitored to be kept similar before and after the data augmentation, while a human-in-the loop qualifies the AI-generated data.

Files in this item

Name:
PIMM_CAID_2023_FENDZI.pdf
Size:
962.1Kb
Format:
PDF
Description:
AI-based Text Generation for ...
Embargoed until:
2024-05-23
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • A General Bayesian Framework for Ellipse-based and Hyperbola-based Damage Localisation in Anisotropic Composite Plates 
    Article dans une revue avec comité de lecture
    FENDZI, Claude; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (SAGE Publications, 2016)
    This paper focuses on Bayesian Lamb wave-based damage localization in structural health monitoring of anisotropic composite materials. A Bayesian framework is applied to take account for uncertainties from experimental ...
  • Optimal Sensors Placement to Enhance Damage Detection in Composite Plates 
    Communication avec acte
    FENDZI, Claude; MOREL, Julien; COFFIGNAL, Gérard; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (2014)
    This paper examines an important challenge in ultrasonic structural health monitoring (SHM), which is the problem of the optimal placement of sensors in order to accurately detect and localize damages. The goal of this ...
  • Sensor validation of a Structural Health Monitoring Process for Aircraft Nacelle 
    Communication avec acte
    MASSOT, Tristan; FENDZI, Claude; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (2014)
    This paper details the implementation process of an embedded structural health monitoring (SHM) system enabling condition-based maintenance of aircraft nacelles. One critical issue before being able to make use of such ...
  • Verification and Validation of Structural Health Monitoring Algorithms: A Maturation Procedure 
    Communication avec acte
    HMAD, Ouadie; FENDZI, Claude; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (IFAC, 2015)
    Structural Health Monitoring (SHM) system offers new approaches to interrogate the integrity of structures. However, their reliability has still to be demonstrated an quantified to enable confidence transition from R&D to ...
  • A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves 
    Article dans une revue avec comité de lecture
    FENDZI, Claude; COFFIGNAL, Gérard; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (SAGE Publications (UK and US), 2016)
    This paper presents a temperature compensation method for Lamb wave structural health monitoring. The proposed approach considers a representation of the piezo-sensor signal through its Hilbert transform that allows one ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales