• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • View Item
  • Home
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermomechanical shape memory testing of 4D printed novel material rhombus-shape structure

Article dans une revue avec comité de lecture
Author
ccAKBAR, Ijaz
211915 Mechanics surfaces and materials processing [MSMP]
ccEL HADROUZ, Mourad
211915 Mechanics surfaces and materials processing [MSMP]
ccEL MANSORI, Mohamed
211915 Mechanics surfaces and materials processing [MSMP]
ccTARFAOUI, Mostapha
301846 École Nationale Supérieure de Techniques Avancées Bretagne [ENSTA Bretagne]

URI
http://hdl.handle.net/10985/25222
DOI
10.1016/j.apmt.2023.101876
Date
2023-08
Journal
Applied Materials Today

Abstract

4D printing of functional energy generation/absorption structures by material extrusion technique can capitalize on the exciting applications in intelligent damping devices and patterns to deform spontaneously. This paper investigated the capitalization of this acquired knowledge by studying the shape memory effects of a functional rhombus shape structure. Initially, the shape memory characteristics of energy absorption and dissipation capacity were analyzed using dynamic mechanical testing to develop databases to gather thermophysical data before expressing the material behavior and recovery performances of printed shape memory structures. Then a complete thermomechanical cycle (shape programming and recovery) on 4D printed amorphous and semi-crystalline shape memory polymers exhibited deep insights into shape memory performance. The performance factors (i.e., recovery and fixity ratios) are influenced by variable printing parameters (i.e., layer height, printing temperature, and speed) and stimuli-based testing conditions. Results reveal both materials have significant shape memory effects with a maximum recovery ratio of up to 92.30 ± 0.32% from the programmed configuration. The amorphous polymer was extremely affected by printing temperature, whilst the semi-crystalline was influenced heavily by the interaction of all three parameters. Finally, shape memory effects predicted by a high-order design model and compared with experimental results showed negligible error. The analyses and assessments presented in this paper are adequate to understand the shape memory behavior under process control parameters to establish a data-driven model of a 4D printed semi-crystalline and amorphous polymer reactive to thermal stimuli.

Files in this item

Name:
MSMP-AMT-EL_Hadrouz-2023.pdf
Size:
5.761Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)

Related items

Showing items related by title, author, creator and subject.

  • Thermal effect on the tribo-mechanical behavior of natural fiber composites at micro-scale 
    Article dans une revue avec comité de lecture
    BUKKAPATNAM, Satish T.S.; EL AMRI, Iskander; ccEL MANSORI, Mohamed; ccCHEGDANI, Faissal (Elsevier, 2019)
    This paper aims to explore the thermal influence on the micro-tribo-mechanical behavior of natural fiber composites. Nanoindentation and scratch-test are used to characterize flax fibers reinforced polypropylene (PP) ...
  • Smoothness and plateaudness contributions to the running-in friction and wear of stratified helical slide and plateau honed cylinder liners 
    Article dans une revue avec comité de lecture
    YOUSFI, Mohammed; MEZGHANI, Sabeur; ccEL MANSORI, Mohamed; ccDEMIRCI, Ibrahim (Elsevier, 2015)
    Cylinder liner surface has a great influence on frictional and wear performances of combustion engines during the running-in period. Two surface texture anisotropies produced by plateau honing (PH) and helical slide honing ...
  • Tribological performances of elliptic and circular texture patterns produced by innovative honing process 
    Article dans une revue avec comité de lecture
    YOUSFI, Mohammed; MEZGHANI, Sabeur; ccEL MANSORI, Mohamed; ccDEMIRCI, Ibrahim (Elsevier, 2016)
    Honing is a manufacturing process which uses friction and abrasion mechanisms at a reduced velocity to print a multiscale and anisotropic texture on the liner surface of automotive engines. It enables to enhance the ...
  • Impact of superficial surface texture anisotropy in helical slide and plateau honing on ring-pack performance 
    Article dans une revue avec comité de lecture
    MEZGHANI, Sabeur; YOUSFI, Mohammed; ccEL MANSORI, Mohamed; ccDEMIRCI, Ibrahim (SAGE Publications, 2015)
    The improvement of environment efficiency of automotive internal combustion engine becomes a fundamental objective. The cylinder engine surface texture considerably influences the functional performances of the ring-pack ...
  • Multi-scale analysis of the roughness effect on lubricated rough contact 
    Article dans une revue avec comité de lecture
    MEZGHANI, Sabeur; YOUSFI, Mohammed; ccEL MANSORI, Mohamed; ccDEMIRCI, Ibrahim (American Society of Mechanical Engineers, 2014)
    Determining friction is as equally essential as determining the film thickness in the lubricated contact, and is an important research subject. Indeed, reduction of friction in the automotive industry is important for both ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales