• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hybrid twin based on machine learning enhanced reduced order model for real-time simulation of magnetic bearings

Article dans une revue avec comité de lecture
Author
ccGHNATIOS, Chady
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
RODRIGUEZ, Sebastian
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
TOMEZYK, Jerome
ccMOUTERDE, Joël
ccDUPUIS, Yves
DA SILVA, Joaquim
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]

URI
http://hdl.handle.net/10985/25752
DOI
10.1186/s40323-024-00258-2
Date
2024-02
Journal
Advanced Modeling and Simulation in Engineering Sciences

Abstract

The simulation of magnetic bearings involves highly non-linear physics, with high dependency on the input variation. Moreover, such a simulation is time consuming and can’t run, within realistic computation time for control purposes, when using classical computation methods. On the other hand, classical model reduction techniques fail to achieve the required precision within the allowed computation window. To address this complexity, this work proposes a combination of physics-based computing methods, model reduction techniques and machine learning algorithms, to tackle the requirements. The physical model used to represent the magnetic bearing is the classical Cauer Ladder Network method, while the model reduction technique is applied on the error of the physical model’s solution. Later on, in the latent space a machine learning algorithm is used to predict the evolution of the correction in the latent space. The results show an improvement of the solution without scarifying the computation time. The solution is computed in almost real-time (few milliseconds), and compared to the finite element reference solution.

Files in this item

Name:
PIMM_AMSES_2024_GHNATIOS.pdf
Size:
3.061Mb
Format:
PDF
Description:
A hybrid twin based on machine ...
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • On the High-Resolution Discretization of the Maxwell Equations in a Composite Tape and the Heating Effects Induced by the Dielectric Losses 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; BARASINSKI, Anais; ccCHINESTA SORIA, Francisco (MDPI AG, 2022-01)
    Electromagnetic field propagation inside composite materials represents a challenge where fiber-scale simulation remains intractable using classical simulation methods. The present work proposes an original 3D simulation ...
  • Spurious-free interpolations for non-intrusive PGD-based parametric solutions: Application to composites forming processes 
    Article dans une revue avec comité de lecture
    ccCUETO, Elias; FALCO, Antonio; DUVAL, Jean-Louis; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2020)
    Non-intrusive approaches for the construction of computational vademecums face different challenges, especially when a parameter variation affects the physics of the problem considerably. In these situations, classical ...
  • Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; HASCOET, Nicolas; ccCUETO, Elias; DUVAL, Jean-Louis; KEUNINGS, Roland; ccGHNATIOS, Chady; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2019)
    The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then ...
  • On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; DELPLACE, Frank; BARASINSKI, Anais; DUVAL, Jean-Louis; ccCUETO, Elias; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Wiley, 2020)
    Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion ...
  • On the data-driven modeling of reactive extrusion 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; CASTERAN, Fanny; ARGERICH, Clara; HASCOET, Nicolas; CASSAGNAU, Philippe; ccGHNATIOS, Chady; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    This paper analyzes the ability of different machine learning techniques, able to operate in the low-data limit, for constructing the model linking material and process parameters with the properties and performances of ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales