• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new methodology for anisotropic yield surface description using model order reduction techniques and invariant neural network

Article dans une revue avec comité de lecture
Auteur
ccGHNATIOS, Chady
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
CAZACU, Oana
21012 Department of Materials Science and Engineering [University of Arizona]
REVIL-BAUDARD, Benoit
21012 Department of Materials Science and Engineering [University of Arizona]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/25772
DOI
10.1016/j.jmps.2024.105542
Date
2024-01
Journal
Journal of the Mechanics and Physics of Solids

Résumé

In this paper, we present a general methodology that we call spectral neural network (SNN) which enables to generate automatically knowing a few datapoints (eight at most), a sound and plausible yield surface for any variations of a given anisotropic material, e.g. batches of the same material or same type of material produced by a different supplier. It relies on the use of a reliable parametrization of a performant analytic orthotropic yield function for the generation of a large database of yield surface shapes and the singular value decomposition method to create a reduced basis. For a specific material, a surrogate model for the reduced basis coordinates is further constructed using few additional datapoints. The dense neural network is built such as to ensure that the invariance requirements dictated by the material symmetry as well as the convexity of the yield surface are automatically enforced. The capabilities of this new methodology are demonstrated for hexagonal closed packed materials titanium materials, which are known to be particularly challenging to model due to their anisotropy and tension–compression asymmetry. Furthermore, we show that the SNN methodology can be extended such as to include variations of multiple materials of vastly different plastic behavior and yield surface shapes. The in-depth analysis presented reveals the benefits and limits of the hybrid data-driven models for description of anisotropic plasticity.

Fichier(s) constituant cette publication

Nom:
PIMM_JMPS_2024_GHNATIOS.pdf
Taille:
3.826Mo
Format:
PDF
Description:
A new methodology for anisotropic ...
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Sensitivity thermal analysis in the laser-assisted tape placement process 
    Article dans une revue avec comité de lecture
    PEREZ, Marta; BARASINSKI, Anaïs; COURTEMANCHE, Benoît; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (AIMS Press, 2018)
    Nowadays, the production of large pieces made of thermoplastic composites is an industrial challenging issue as there are yet several difficulties associated to their processing. The laserassisted tape placement (LATP) ...
  • On the Proper Generalized Decomposition applied to microwave processes involving multilayered components 
    Article dans une revue avec comité de lecture
    TERTRAIS, Hermine; IBANEZ PINILLO, Ruben; BARASINSKI, Anais; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (Elsevier, 2019)
    Many electrical and structural components are constituted of a stacking of multiple thin layers with different electromagnetic, mechanical and thermal properties. When 3D descriptions become compulsory the approximation ...
  • Advanced separated spatial representations for hardly separable domains 
    Article dans une revue avec comité de lecture
    GHNATIOS, Chady; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; ccCUETO, Elias; ccDUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Elsevier, 2019)
    This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The ...
  • Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; HASCOET, Nicolas; ccCUETO, Elias; DUVAL, Jean-Louis; KEUNINGS, Roland; ccGHNATIOS, Chady; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2019)
    The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then ...
  • A non-local void dynamics modeling and simulation using the Proper Generalized Decomposition 
    Article dans une revue avec comité de lecture
    SIMACEK, Pavel; ADVANI, Suresh G.; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (Springer Verlag, 2020)
    In this work we develop a void filling and void motion dynamics model using volatile pressure and squeeze flow during tape placement process. The void motion and filling are simulated using a non-local model where their ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales