• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing Sensor Integrity for Nuclear Waste Monitoring Using Graph Neural Networks

Article dans une revue avec comité de lecture
Auteur
ccHEMBERT, Pierre
12854 Agence Nationale pour la Gestion des Déchets Radioactifs [ANDRA]
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccGHNATIOS, Chady
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
COTTON, Julien
12854 Agence Nationale pour la Gestion des Déchets Radioactifs [ANDRA]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/25779
DOI
10.3390/s24051580
Date
2024-02
Journal
Sensors

Résumé

A deep geological repository for radioactive waste, such as Andra’s Cigéo project, requires long-term (persistent) monitoring. To achieve this goal, data from a network of sensors are acquired. This network is subject to deterioration over time due to environmental effects (radioactivity, mechanical deterioration of the cell, etc.), and it is paramount to assess each sensor’s integrity and ensure data consistency to enable the precise monitoring of the facilities. Graph neural networks (GNNs) are suitable for detecting faulty sensors in complex networks because they accurately depict physical phenomena that occur in a system and take the sensor network’s local structure into consideration in the predictions. In this work, we leveraged the availability of the experimental data acquired in Andra’s Underground Research Laboratory (URL) to train a graph neural network for the assessment of data integrity. The experiment considered in this work emulated the thermal loading of a high-level waste (HLW) demonstrator cell (i.e., the heating of the containment cell by nuclear waste). Using real experiment data acquired in Andra’s URL in a deep geological layer was one of the novelties of this work. The used model was a GNN that inputted the temperature field from the sensors (at the current and past steps) and returned the state of each individual sensor, i.e., faulty or not. The other novelty of this work lay in the application of the GraphSAGE model which was modified with elements of the Graph Net framework to detect faulty sensors, with up to half of the sensors in the network being faulty at once. This proportion of faulty sensors was explained by the use of distributed sensors (optic fiber) and the environmental effects on the cell. The GNNs trained on the experimental data were ultimately compared against other standard classification methods (thresholding, artificial neural networks, etc.), which demonstrated their effectiveness in the assessment of data integrity.

Fichier(s) constituant cette publication

Nom:
PIMM_S_2024_HEMBERT.pdf
Taille:
9.703Mo
Format:
PDF
Description:
Assessing Sensor Integrity for ...
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • A hybrid twin based on machine learning enhanced reduced order model for real-time simulation of magnetic bearings 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; RODRIGUEZ, Sebastian; TOMEZYK, Jerome; ccMOUTERDE, Joël; ccDUPUIS, Yves; DA SILVA, Joaquim; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2024-02)
    The simulation of magnetic bearings involves highly non-linear physics, with high dependency on the input variation. Moreover, such a simulation is time consuming and can’t run, within realistic computation time for control ...
  • On the data-driven modeling of reactive extrusion 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; CASTERAN, Fanny; ARGERICH, Clara; HASCOET, Nicolas; CASSAGNAU, Philippe; ccGHNATIOS, Chady; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    This paper analyzes the ability of different machine learning techniques, able to operate in the low-data limit, for constructing the model linking material and process parameters with the properties and performances of ...
  • Advanced modeling and simulation of sheet moulding compound (SMC) processes 
    Article dans une revue avec comité de lecture
    PEREZ, Marta; PRONO, David; ccGHNATIOS, Chady; ccABISSET-CHAVANNE, Emmanuelle; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    In SMC processes, a charge of a composite material, which typically consists of a matrix composed of an unsaturated polyester or vinylester, reinforced with chopped glass fibres or carbon fi bre bundles and fillers, is ...
  • A non-local void dynamics modeling and simulation using the Proper Generalized Decomposition 
    Article dans une revue avec comité de lecture
    SIMACEK, Pavel; ADVANI, Suresh G.; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (Springer Verlag, 2020)
    In this work we develop a void filling and void motion dynamics model using volatile pressure and squeeze flow during tape placement process. The void motion and filling are simulated using a non-local model where their ...
  • On the Proper Generalized Decomposition applied to microwave processes involving multilayered components 
    Article dans une revue avec comité de lecture
    TERTRAIS, Hermine; IBANEZ PINILLO, Ruben; BARASINSKI, Anais; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (Elsevier, 2019)
    Many electrical and structural components are constituted of a stacking of multiple thin layers with different electromagnetic, mechanical and thermal properties. When 3D descriptions become compulsory the approximation ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales