Thermohydraulic assessment of mixing behaviors and entropy generation using pseudoplastic fluids in short microfluidic devices
Article dans une revue avec comité de lecture
Date
2025-02Journal
International Communications in Heat and Mass TransferAbstract
Thermal mixing fluids in chaotic microdevices have significant importance in many potential applications and have enormous utility in thermal engineering processes. In microfluidic devices, The Two-Layer with Crossing Channels Micromixer (TLCCM) emphasized its efficiency in thermally homogenizing Newtonian fluids, which inspired us to investigate its performance using pseudoplastic fluids. A numerical comparative investigation has been carried out to evaluate the thermal mixing performances of pseudoplastic fluids in laminar steady flows using four chaotic microdevices: TLCCM, L, OH and OX. Quantitative validation of pseudoplastic fluids within a complex geometry, subject to constant heat flux, has been done. Navier-Stokes, the mass conservation, energy and species transport equations have been solved numerically employing CFD code. The pseudoplastic fluids consist of carboxymethyl cellulose solutions, which are characterized using the power-law model, the flow behavior index ranging from 0.75 to 1 and the generalized Reynolds number ranging from 0.2 to 70. To quantify the thermal mixing efficiency, the effects of the fluid behavior index, the generalized Reynolds number, on the thermal mixing degree for the proposed micromixers are presented, where high thermal mixing degrees have been obtained which evolve between 0.9 and 0.99. The entropy generation due to heat transfers and fluid pressure drops has been introduced versus the generalized Reynolds numbers for different fluid behavior indexes. The Bejan number values evolve close to 1. The probability density function PDF (%) at the TLCCM micromixer exit is localized in a narrow range that refers to the ideal temperature value for mixing, which is 315 Kelvin, whatever the fluid behavior index value.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureKOUADRI, Amar;
DOUROUM, Embarek; EL OUEDERNI, Ahmed Ridha; BENAZZA, Abdelylah; LAOUEDJ, Samir;
KHELLADI, Sofiane (Elsevier BV, 2024-04)
Efficient chaotic microdevices have major importance across many potential applications in industrial processes and operations, which form essential parts of microfluidic devices. In microfluidics, The Two-Layer Crossing ... -
Article dans une revue avec comité de lectureTOMOV, Petar; KHELLADI, Sofiane; RAVELET, Florent; SARRAF, Christophe; BAKIR, Farid; VERTENOEUIL, P. (Elsevier, 2015)The injection of bubbles into an already cavitating flow is a way of influencing the typical cavitating behavior. The present article deals with experiments on aerated and non-aerated cavitation in a transparent horizontal ...
-
Communication avec acteTOMOV, Petar; DANLOS, Amélie;
RAVELET, Florent;
SARRAF, Christophe;
BAKIR, Farid;
KHELLADI, Sofiane (IOP sciences conference series, 2015)
The fact of injecting bubbles into a cavitating flow influences typical cavitating behavior. Cavitation and aerated cavitation experiments has been carried out on a symmetrical venturi nozzle with convergent/divergent ... -
Article dans une revue avec comité de lectureKRIMI, Abdelkader; NOGUEIRA, Xesús; ATA, Riadh; REZOUG, Mehdi;
DELIGANT, Michael;
KHELLADI, Sofiane (Elsevier, 2018)
In this work, a weakly compressible smoothed particle hydrodynamics (WCSPH) multiphase model is developed. The model is able to deal with soil-water interactions coupled in a strong and natural form. A Regularized Bingham ... -
Article dans une revue avec comité de lectureRAMÍREZ, Luis; NOGUEIRA, Xesús; OURO, Pablo; NAVARRINA, Fermín; COLOMINAS, Ignasi;
KHELLADI, Sofiane (Springer Verlag, 2017)
In this work a higher-order accurate finite volume method for the resolution of the Euler/Navier–Stokes equations using Chimera grid techniques is presented. The formulation is based on the use of Moving Least Squares ...

