• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Ingénierie des fluides Systèmes énergétiques (LIFSE)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Ingénierie des fluides Systèmes énergétiques (LIFSE)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D numerical simulation and experimental validation of resin-bonded sand gravity casting: Filling, cooling, and solidification with SPH and ProCAST approaches

Article dans une revue avec comité de lecture
Auteur
ZARBINI SEYDANI, Mohammad
1003528 Laboratoire d'Ingénierie des Fluides et des Systèmes Énergétiques [LIFSE]
KRIMI, Abdelkader
57241 École Polytechnique de Montréal [EPM]
ccKHELLADI, Sofiane
1003528 Laboratoire d'Ingénierie des Fluides et des Systèmes Énergétiques [LIFSE]
ccBEDEL, Marie
211915 Mechanics surfaces and materials processing [MSMP]
ccEL MANSORI, Mohamed
211915 Mechanics surfaces and materials processing [MSMP]

URI
http://hdl.handle.net/10985/26215
DOI
10.1016/j.tsep.2023.102329
Date
2023-12
Journal
Thermal Science and Engineering Progress

Résumé

This article provides a comprehensive investigation into the resin-bonded sand gravity casting process, with a focus on the filling, cooling, and solidification steps. The research combines numerical simulations and experimental validation in a three-dimensional (3D) configuration, utilizing a realistic filling system. The study employs three approaches—experimental tests, Smoothed Particle Hydrodynamics (SPH) simulations, and ProCAST simulations—to analyze the filling, cooling, and solidification steps. Two different molds were used in the experiments. The first mold has a transparent glass component in front of the plate, enabling observation and recording of the filling process, while the second mold, used solely for thermal analysis, did not incorporate any glass component. The SPH approach yields more accurate results for the filling time, liquid level height, and morphology when compared to ProCAST. The discrepancy in final filling time for the desired casting part between the experiment and SPH is 5.13 %, and the difference between the experiment and ProCAST is 15.38 %. Additionally, the cooling and solidification steps are investigated through an analysis of cooling curves. The numerical methods demonstrate slightly higher cooling rates and deviations in solidification times compared to the experimental data, mainly due to the thermal Neumann boundary condition. Furthermore, the average discrepancy in solidification time for five points of the intended casting component between the experiment and SPH is 8.60 %, whereas when compared with ProCAST, the discrepancy increases to 9.13 %.

Fichier(s) constituant cette publication

Nom:
LIFSE_TSEP_2023-ZARBINI-SEYDANI.pdf
Taille:
13.51Mo
Format:
PDF
Description:
3D numerical simulation and ...
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Ingénierie des fluides Systèmes énergétiques (LIFSE)
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • A 2D filling and solidification benchmark test: validating smoothed particle hydrodynamics (SPH) simulations for sand gravity casting 
    Article dans une revue avec comité de lecture
    ZARBINI SEYDANI, Mohammad; KRIMI, Abdelkader; ccBEDEL, Marie; ccKHELLADI, Sofiane; ccEL MANSORI, Mohamed (Springer Science and Business Media LLC, 2023-07)
    The simulation of the sand gravity casting process is complicated due to its multiscale and multiphysics nature. Although there are many commercial software options available, it remains extremely difficult to accurately ...
  • Geometrical effects on filling dynamics in low pressure casting of light alloys 
    Article dans une revue avec comité de lecture
    ccBEDEL, Marie; SANITAS, Antonin; ccEL MANSORI, Mohamed (Elsevier, 2019)
    In aluminum low-pressure sand casting process, filling oscillations are observed when the metal front reaches a section change in a part. The effect of geometry on the filling oscillations is primary considered experimentally, ...
  • Experimental and numerical study of section restriction effects on filling behavior in low-pressure aluminum casting 
    Article dans une revue avec comité de lecture
    SANITAS, Antonin; ccBEDEL, Marie; ccEL MANSORI, Mohamed (Elsevier, 2018)
    The molten metal flow under low-pressure filling was investigated both experimentally and numerically inside sand molds with different cross sections and different pressure ramps. The proposed fluid dynamics simulation ...
  • Investigating surface roughness of ZE41 magnesium alloy cast by low-pressure sand casting process 
    Article dans une revue avec comité de lecture
    SANITAS, Antonin; ccBEDEL, Marie; ccEL MANSORI, Mohamed; ccCONIGLIO, Nicolas (Springer Verlag, 2017)
    The sand mold 3D printing technologies enable the manufacturing of molds with great dimensional accuracy. However, the roughness of as-cast components is higher when cast in a 3D printed mold rather than in a traditional ...
  • Smoothed Particle Hydrodynamics: A consistent model for interfacial multiphase fluid flow simulations 
    Article dans une revue avec comité de lecture
    KRIMI, Abdelkader; REZOUG, Mehdi; NOGUEIRA, Xesús; RAMÍREZ, Luis; ccDELIGANT, Michael; ccKHELLADI, Sofiane (Elsevier, 2018)
    In this work, a consistent Smoothed Particle Hydrodynamics (SPH) model to deal with interfacial multiphase fluid flows simulation is proposed. A modification to the Continuum Stress Surface formulation (CSS) [1] to enhance ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales