• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deformation behaviour of 304 stainless steel - experimental and modelling

Communication sans acte
Author
PETIT, Bertrand
1026 Laboratoire d'étude des textures et application aux matériaux [LETAM]
1104 Laboratoire de physique et mécanique des matériaux [LPMM]
ccGEY, Nathalie
1026 Laboratoire d'étude des textures et application aux matériaux [LETAM]
ccABED-MERAIM, Farid
1104 Laboratoire de physique et mécanique des matériaux [LPMM]
HUMBERT, Michel
1026 Laboratoire d'étude des textures et application aux matériaux [LETAM]
ccBEN ZINEB, Tarak
1104 Laboratoire de physique et mécanique des matériaux [LPMM]
ccBOLLE, Bernard
1026 Laboratoire d'étude des textures et application aux matériaux [LETAM]
CHERKAOUI, Mohamed
1104 Laboratoire de physique et mécanique des matériaux [LPMM]

URI
http://hdl.handle.net/10985/26512
Date
2005-09

Abstract

The austenitic stainless steels are characterised by remarkable mechanical properties, combining high ductility and high strength. Their plastic deformation involves a wide variety of strain induced deformation mechanisms, strongly related to the alloy stacking fault energy. With increasing SFE, martensitic transformation sequences (gamma to alpha', gamma to epsilon to alpha'), deformation twinning, glide of dissociated or perfect dislocations can occur. A quantitative modelling of such a deformation behaviour, with real predictive capabilities, has been developed recently. It is formulated in terms of finite strains and takes the various inelastic strains encountered in the material into account. In particular, two inelastic deformations are considered, either epsilon martensite transformation strain or twinning strain, depending on the testing temperature, and the alpha' transformation strain. Thermomechanical couplings are realised between these two inelastic deformation modes. The model which uses a self-consistent method for the scale transition, allows us to calculate the global behaviour of the polycrystal. In this contribution, this new model is applied to foresee the behaviour of a 304 stainless steel, tensile tested in a temperature range of -60 degrees Celcius to room temperature. Besides, large experimental investigations were performed on various 304 specimens. In particular, X-ray diffraction was used to quantify the volume fraction of the alpha' and epsilon martensite and to determine the texture evolution of the parent and the product phases. The local microtextures were analysed with the EBSD technique in a SEM FEG. The predictions obtained with the micromechanical model are compared to the different experimental results, notably the mechanical behaviour and associated deformation mechanisms, the transformation kinetic as well as the texture evolution.

Files in this item

Name:
LEM3_EUROMAT_2005_PETIT-ABED-M ...
Size:
396.5Kb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Influence de la microstructure intragranulaire sur l'évolution des surfaces de charge d'un acier ferritique lors de trajets de déformation monotones et complexes 
    Communication avec acte
    FRANZ, Gérald; ccABED-MERAIM, Farid; BEN ZINEB, Tarak; LEMOINE, Xavier; BERVEILLER, Marcel (Association Française de Mécanique, 2007)
    Deux modèles micromécaniques de comportement élastoplastique, développés en adoptant une formulation en transformations finies et couplés à une technique de transition d’échelle autocohérente, sont utilisés pour étudier ...
  • Strain localization analysis using a multiscale model 
    Communication sans acte
    FRANZ, Gérald; ccABED-MERAIM, Farid; BEN ZINEB, Tarak; LEMOINE, Xavier; BERVEILLER, Marcel (Elsevier, 2007)
    The development of a relevant constitutive model adapted to sheet metal forming simulations requires an accurate description of the most important sources of anisotropy, i.e. the slip processes, the intragranular substructure ...
  • Ellipticity loss analysis for tangent moduli deduced from a large strain elastic–plastic self-consistent model 
    Article dans une revue avec comité de lecture
    FRANZ, Gérald; ccABED-MERAIM, Farid; LORRAIN, Jean-Paul; BEN ZINEB, Tarak; LEMOINE, Xavier; BERVEILLER, Marcel (Elsevier, 2009)
    In order to investigate the impact of microstructures and deformation mechanisms on the ductility of materials, the criterion first proposed by Rice is applied to elastic–plastic tangent moduli derived from a large strain ...
  • Impact of microstructural mechanisms on ductility limits 
    Communication avec acte
    FRANZ, Gérald; ccABED-MERAIM, Farid; BEN ZINEB, Tarak; LEMOINE, Xavier; BERVEILLER, Marcel (2011)
    In order to investigate the effects of microstructure and deformation mechanisms on the ductility of multiphase steels, a formability criterion based on loss of ellipticity of the boundary value problem is coupled with an ...
  • Strain localization analysis using a multiscale model 
    Article dans une revue avec comité de lecture
    FRANZ, Gérald; ccABED-MERAIM, Farid; BEN ZINEB, Tarak; LEMOINE, Xavier; BERVEILLER, Marcel (Elsevier, 2009)
    In order to analyze the formability of steels in sheet metal forming, a ductility loss criterion is coupled with a multiscale model. The behavior at the mesoscopic (grain) scale is modeled by a large strain micromechanical ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales