• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

AI-driven advances in composite materials for hydrogen storage vessels: A review

Article dans une revue avec comité de lecture
Auteur
ccAMINHARATI, Pedram
127758 Laboratoire Conception de Produits et Innovation [LCPI]
ccSHIRINBAYAN, Mohammadali
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccBENFRIHA, Khaled
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccFITOUSSI, Joseph
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/26843
DOI
10.1016/j.ijhydene.2025.151288
Date
2025-09
Journal
International Journal of Hydrogen Energy

Résumé

This review provides a comprehensive examination of artificial intelligence methods applied to the design, optimization, and performance prediction of composite-based hydrogen storage vessels, with a focus on composite overwrapped pressure vessels. Targeted at researchers, engineers, and industrial stakeholders in materials science, mechanical engineering, and renewable energy sectors, the paper aims to bridge traditional mechanical modeling with evolving AI tools, while emphasizing alignment with standardization and certification re­quirements to enhance safety, efficiency, and lifecycle integration in hydrogen infrastructure. The review begins by introducing HSV types, their material compositions, and key design challenges, including high-pressure durability, weight reduction, hydrogen embrittlement, leakage prevention, and environmental sustainability. It then analyzes conventional approaches, such as finite element analysis, multiscale modeling, and experimental testing, which effectively address aspects like failure modes, fracture strength, liner damage, dome thickness, winding angle effects, crash behavior, crack propagation, charging/discharging dynamics, burst pressure, durability, reliability, and fatigue life. On the other hand, it has been shown that to optimize and predict the characteristics of hydrogen storage vessels, it is necessary to combine the conventional methods with artificial intelligence methods, as conventional methods often fall short in multi-objective optimization and rapid predictive analytics due to computational intensity and limitations in handling uncertainty or complex datasets. To overcome these gaps, the paper evaluates hybrid frameworks that integrate traditional techniques with AI, including machine learning, deep learning, artificial neural networks, evolutionary algorithms, and fuzzy logic. Recent studies demonstrate AI’s efficacy in failure prediction, design optimization to mitigate structural risks, structural health monitoring, material property evaluation, burst pressure forecasting, crack detection, com­posite lay-up arrangement, weight minimization, material distribution enhancement, metal foam ratio optimi­zation, and optimal material selection. By synthesizing these advancements, this work underscores AI’s potential to accelerate development, reduce costs, and improve HSV performance, while advocating for physics-informed models, robust datasets, and regulatory alignment to facilitate industrial adoption.

Fichier(s) constituant cette publication

Nom:
LEM3_IJHE_2025_MERAGHNI.pdf
Taille:
14.27Mo
Format:
PDF
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Laboratoire de Conception Fabrication Commande (LCFC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Exploring fatigue characteristics of metallic boss-polymer liner adhesion in hydrogen storage tanks: Experimental insights post surface treatment 
    Article dans une revue avec comité de lecture
    ccAHMADIFAR, Mohammad; ccBENFRIHA, Khaled; ccSHIRINBAYAN, Mohammadali; ccAOUSSAT, Améziane; ccFITOUSSI, Joseph (Elsevier BV, 2023-11)
    Progress in hydrogen fuel powered systems has been propelled by the implementation of secure, reliable, and cost-effective hydrogen storage and transportation technologies. The fourth category, distinguished by a polymer ...
  • Effect of processing conditions on morphology and mechanical damage in glass-reinforced polypropylene composite 
    Article dans une revue avec comité de lecture
    ccNOUIRA, Samia; ccSHIRINBAYAN, Mohammadali; ccPEIXINHO, Jorge; ccBENFRIHA, Khaled; HASSINE, Tarek; ccFITOUSSI, Joseph (Wiley (Society of PLastic Engineers, SPE), 2024-03)
    This study aims to analyze the effect of processing parameters, particularly the cooling rate, on the morphology and mechanical properties of reinforced glass fiber polypropylene (GF-PP) films. To achieve the objective, a ...
  • Effect of build orientation and post-curing of (meth)acrylate‐based photocurable resin fabricated by stereolithography on the mechanical behavior from quasi-static to high strain rate loadings 
    Article dans une revue avec comité de lecture
    ccSHIRINBAYAN, Mohammadali; ZIRAK, Nader; SADDAOUI, Ouiza; MAMMERI, Amrid; AZZOUZ, Kamel; ccBENFRIHA, Khaled; ccTCHARKHTCHI, Abbas; ccFITOUSSI, Joseph (Springer Science and Business Media LLC, 2022-10)
    Stereolithography (SLA) is becoming an important fabrication method among the different additive manufacturing techniques. This study investigates the effect of high strain rate on mechanical behavior, considering the fact ...
  • Investigation of manufacturing process effects on microstructure and fatigue prediction in composite automotive tailgate design 
    Article dans une revue avec comité de lecture
    ccFITOUSSI, Joseph; ccNOUIRA, Samia; ccBENFRIHA, Khaled; LARIBI, Mohamed-Amine; KALLEL, Achraf; TIE BI, Robert; ccSHIRINBAYAN, Mohammadali (Springer, 2024-01)
    Manufacturing processes significantly influence microstructural variations in short fiber reinforced composites, which affect damage characteristics and fatigue life. Accurate fatigue life prediction is critical, especially ...
  • Effects of hygrothermal aging on the physicochemical and mechanical properties of 3D-printed PA6 
    Article dans une revue avec comité de lecture
    ccSHIRINBAYAN, Mohammadali; ccBENFRIHA, Khaled; ccAHMADIFAR, Mohammad; ccPENAVAYRE, Clara; ccNOUIRA, Samia; ccFITOUSSI, Joseph (Springer Science and Business Media LLC, 2024-02)
    This paper investigates the effects of hygrothermal aging on PA6 filaments used as raw material in fused filament fabrication (FFF). The filaments were subjected to various aging conditions to evaluate their physicochemical ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales