• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow

Article dans une revue avec comité de lecture
Author
CHERUBINI, Stefania
19097 Dipartimento di Ingegneria Meccanica e Gestionale [DIMEG]
134975 Laboratoire de Dynamique des Fluides [DynFluid]
DE PALMA, Pietro
19097 Dipartimento di Ingegneria Meccanica e Gestionale [DIMEG]
ROBINET, Jean-Christophe
134975 Laboratoire de Dynamique des Fluides [DynFluid]
BOTTARO, Alessandro

URI
http://hdl.handle.net/10985/6861
DOI
10.1103/PhysRevE.82.066302
Date
2010
Journal
Physical Review E

Abstract

Recent studies have suggested that in some cases transition can be triggered by some purely nonlinear mechanisms. Here we aim at verifying such an hypothesis, looking for a localized perturbation able to lead a boundary-layer flow to a chaotic state, following a nonlinear route. Nonlinear optimal localized perturbations have been computed by means of an energy optimization which includes the nonlinear terms of the Navier- Stokes equations. Such perturbations lie on the turbulent side of the laminar-turbulent boundary, whereas, for the same value of the initial energy, their linear counterparts do not. The evolution of these perturbations toward a turbulent flow involves the presence of streamwise-inclined vortices at short times and of hairpin structures prior to breakdown.

Files in this item

Name:
PRE2010-final.pdf
Size:
2.187Mb
Format:
PDF
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • A purely nonlinear route to transition approaching the edge of chaos in a boundary layer 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe; BOTTARO, Alessandro (IOP Publishing, 2012)
    The understanding of transition in shear flows has recently progressed along new paradigms based on the central role of coherent flow structures and their nonlinear interactions. We follow such paradigms to identify, by ...
  • Edge states in a boundary layer 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe; BOTTARO, Alessandro (American Institute of Physics, 2011)
    The understanding of laminar-turbulent transition in shear flows has recently progressed along new paradigms based on the central role of nonlinear exact coherent states. We follow such paradigms to identify, for the first ...
  • The minimal seed of turbulent transition in the boundary layer 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe; BOTTARO, Alessandro (Cambridge University Press (CUP), 2011)
    This paper describes a scenario of transition from laminar to turbulent flow in a spatially developing boundary layer over a flat plate. The base flow is the Blasius non-parallel flow solution; it is perturbed by optimal ...
  • Optimal wave packets in a boundary layer and initial phases of a turbulent spot 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; ROBINET, Jean-Christophe; BOTTARO, Alessandro; DE PALMA, Pietro (Cambridge University Press (CUP), 2010)
    The three-dimensional global optimal dynamics of a flat-plate boundary layer is studied by means of an adjoint-based optimization in a spatial domain of long – but finite – streamwise dimension. The localized optimal initial ...
  • Computing heteroclinic orbits using adjoint-based methods 
    Article dans une revue avec comité de lecture
    FARANO, Mirko; CHERUBINI, Stefania; ROBINET, Jean-Christophe; DE PALMA, Pietro; SCHNEIDER, T. M. (Cambridge University Press (CUP), 2018)
    Transitional turbulence in shear flows is supported by a network of unstable exact invariant solutions of the Navier–Stokes equations. The network is interconnected by heteroclinic connections along which the turbulent ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales