• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble

Article dans une revue avec comité de lecture
Author
CHERUBINI, Stefania
19097 Dipartimento di Ingegneria Meccanica e Gestionale [DIMEG]
DE PALMA, Pietro
19097 Dipartimento di Ingegneria Meccanica e Gestionale [DIMEG]
ccROBINET, Jean-Christophe
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/6866
DOI
10.1063/1.3276903
Date
2010
Journal
The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble

Abstract

The effects of non-normality and nonlinearity of the two-dimensional Navier–Stokes differential operator on the dynamics of a large laminar separation bubble over a flat plate have been studied in both subcritical and slightly supercritical conditions. The global eigenvalue analysis and direct numerical simulations have been employed in order to investigate the linear and nonlinear stability of the flow. The steady-state solutions of the Navier–Stokes equations at supercritical and slightly subcritical Reynolds numbers have been computed by means of a continuation procedure. Topological flow changes on the base flow have been found to occur close to transition, supporting the hypothesis of some authors that unsteadiness of separated flows could be due to structural changes within the bubble. The global eigenvalue analysis and numerical simulations initialized with small amplitude perturbations have shown that the non-normality of convective modes allows the bubble to act as a strong amplifier of small disturbances. For subcritical conditions, nonlinear effects have been found to induce saturation of such an amplification, originating a wave-packet cycle similar to the one established in supercritical conditions, but which is eventually damped. A transient amplification of finite amplitude perturbations has been observed even in the attached region due to the high sensitivity of the flow to external forcing, as assessed by a linear sensitivity analysis. For supercritical conditions, the non-normality of the modes has been found to generate low-frequency oscillations (flapping) at large times. The dependence of such frequencies on the Reynolds number has been investigated and a scaling law based on a physical interpretation of the phenomenon has been provided, which is able to explain the onset of a secondary flapping frequency close to transition.

Files in this item

Name:
POF2010-Cherubini.pdf
Size:
2.781Mb
Format:
PDF
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Nonlinear control of unsteady finite-amplitude perturbations in the Blasius boundary-layer flow 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; ccROBINET, Jean-Christophe (Cambridge University Press (CUP), 2013)
    The present work provides an optimal control strategy, based on the nonlinear Navier–Stokes equations, aimed at hampering the rapid growth of unsteady finite-amplitude perturbations in a Blasius boundary-layer flow. A ...
  • The onset of three-dimensional centrifugal global modes and their nonlinear development in a recirculating flow over a flat surface 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; ALIZARD, Frédéric; ccROBINET, Jean-Christophe (American Institute of Physics, 2010)
    The three-dimensional stability dynamics of a separation bubble over a flat plate has been studied in both linear and nonlinear conditions. Using a global eigenvalue analysis, two centrifugal global modes are identified: ...
  • Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ccROBINET, Jean-Christophe (American Physical Society (APS), 2010)
    Recent studies have suggested that in some cases transition can be triggered by some purely nonlinear mechanisms. Here we aim at verifying such an hypothesis, looking for a localized perturbation able to lead a boundary-layer ...
  • Numerical Study of the Effect of Freestream Turbulence on by-pass Transition in a Boundary Layer 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; ccROBINET, Jean-Christophe (Elsevier, 2014)
    We use direct numerical simulations in the presence of free-stream turbulence having different values of intensity, T u, and integral length scale, L, in order to determine which kind of structures are involved in the path ...
  • Optimal wave packets in a boundary layer and initial phases of a turbulent spot 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; BOTTARO, Alessandro; DE PALMA, Pietro; ccROBINET, Jean-Christophe (Cambridge University Press (CUP), 2010)
    The three-dimensional global optimal dynamics of a flat-plate boundary layer is studied by means of an adjoint-based optimization in a spatial domain of long – but finite – streamwise dimension. The localized optimal initial ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales