The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble
Article dans une revue avec comité de lecture
Date
2010Journal
The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubbleAbstract
The effects of non-normality and nonlinearity of the two-dimensional Navier–Stokes differential operator on the dynamics of a large laminar separation bubble over a flat plate have been studied in both subcritical and slightly supercritical conditions. The global eigenvalue analysis and direct numerical simulations have been employed in order to investigate the linear and nonlinear stability of the flow. The steady-state solutions of the Navier–Stokes equations at supercritical and slightly subcritical Reynolds numbers have been computed by means of a continuation procedure. Topological flow changes on the base flow have been found to occur close to transition, supporting the hypothesis of some authors that unsteadiness of separated flows could be due to structural changes within the bubble. The global eigenvalue analysis and numerical simulations initialized with small amplitude perturbations have shown that the non-normality of convective modes allows the bubble to act as a strong amplifier of small disturbances. For subcritical conditions, nonlinear effects have been found to induce saturation of such an amplification, originating a wave-packet cycle similar to the one established in supercritical conditions, but which is eventually damped. A transient amplification of finite amplitude perturbations has been observed even in the attached region due to the high sensitivity of the flow to external forcing, as assessed by a linear sensitivity analysis. For supercritical conditions, the non-normality of the modes has been found to generate low-frequency oscillations (flapping) at large times. The dependence of such frequencies on the Reynolds number has been investigated and a scaling law based on a physical interpretation of the phenomenon has been provided, which is able to explain the onset of a secondary flapping frequency close to transition.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureFARANO, Mirko; CHERUBINI, Stefania; ROBINET, Jean-Christophe; DE PALMA, Pietro; SCHNEIDER, T. M. (Cambridge University Press (CUP), 2018)Transitional turbulence in shear flows is supported by a network of unstable exact invariant solutions of the Navier–Stokes equations. The network is interconnected by heteroclinic connections along which the turbulent ...
-
Article dans une revue avec comité de lecturePARENTE, ENZA; ROBINET, Jean-Christophe; DE PALMA, Pietro; CHERUBINI, Stefania (Cambridge University Press, 2022)Recently, many authors have investigated the origin and growth of turbulent bands in shear flows, highlighting the role of streaks and their inflectional instability in the process of band generation and sustainment. ...
-
Article dans une revue avec comité de lecturePARENTE, Enza; FARANO, Mirko; ROBINET, Jean-Christophe; DE PALMA, Pietro; CHERUBINI, Stefania (The Royal Society Publishing, 2022-05)A new mathematical framework is proposed for characterizing the coherent motion of fluctuations around a mean turbulent channel flow. We search for statistically invariant coherent solutions of the unsteady Reynolds-averaged ...
-
Article dans une revue avec comité de lecturePARENTE, Enza; ROBINET, Jean-Christophe; DE PALMA, Pietro; CHERUBINI, Stefania (American Physical Society, 2020)The modal and nonmodal linear stability of a stably stratified Blasius boundary layer flow, composed of a velocity and a thermal boundary layer, is investigated. The temporal and spatial linear stability of such flow is ...
-
Article dans une revue avec comité de lectureMANCINI, C.; FARANO, Mirko; DE PALMA, Pietro; ROBINET, Jean-Christophe; CHERUBINI, Stefania (Elsevier, 2017)This work describes the development of a method for the global hydrodynamic stability analysis of diffusion flames. The low-Machnumber (LMN) Navier–Stokes (NS) equations for reacting flows are solved together with a transport ...