Modeling of Rolling Knee Biped Robot
Rapport de recherche
Date
2013Abstract
This report presents the dynamic modeling of a planar biped robot. The robot has seven bodies and 9 DOF. Two kinematic configurations are investigated. The first has only revolute joints on all articulation. The second differs by the presence of rolling contact on the knees. All matrices involved in the model are given in explicit form. All the possibilities of contact between the feet and the ground are considered.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteHOBON, Mathieu; LAKBAKBI EL YAAQOUBI, Nafissa; ABBA, Gabriel (AFM, 2011)L’article présente la méthodologie d’obtention de trajectoires optimales de marche pour une nouvelle classe de robot bipède. Le robot bipède est constitué de sept corps et possède des genoux anthropomorphes avec un contact ...
-
Article dans une revue avec comité de lectureHOBON, Mathieu; LAKBAKBI EL YAAQOUBI, Nafissa; ABBA, Gabriel (Elsevier, 2013)The design of humanoid robots has been a tricky challenge for several years. Due to the kinematic complexity of human joints, their movements are notoriously difficult to be reproduced by a mechanism. The human knees allow ...
-
Communication avec acteHOBON, Mathieu; LAKBAKBI EL YAAQOUBI, Nafissa; ABBA, Gabriel (2013)The knee of biped robots has usually one degree of freedom which one is a revolute joint. This work focuses on the study of rolling contact knee. The knee is composed of a cylinder in the extremity of the femur, rolling ...
-
Communication avec acteHOBON, Mathieu; LAKBAKBI EL YAAQOUBI, Nafissa; ABBA, Gabriel (IEEE, 2013)This paper presents the energy consumption of a biped robot with a new modelled structure of knees which is called rolling knee (RK). The dynamic model, the actuators and the friction coefficients of the gear box are known. ...
-
Communication avec acteHOBON, Mathieu; LAKBAKBI EL YAAQOUBI, Nafissa; ABBA, Gabriel (Elsevier, 2011)In this paper, we address the problem of optimization of trajectories for a new class of biped robot. The knees of this biped are similar as the anthropomorphic one and have a rolling contact between the femur and the ...