• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinear structural damage detection based on cascade of Hammerstein models

Article dans une revue avec comité de lecture
Author
HAJRYA, Rafik
ccMECHBAL, Nazih
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccRÉBILLAT, Marc

URI
http://hdl.handle.net/10985/8235
DOI
10.1016/j.ymssp.2014.03.009
Date
2014
Journal
Mechanical Systems and Signal Processing

Abstract

Structural damages can result in nonlinear dynamical signatures that can significantly enhance their detection. An original nonlinear damage detection approach is proposed that is based on a cascade of Hammerstein models representation of the structure. This model is estimated by means of the Exponential Sine Sweep Method from only one measurement. On the basis of this estimated model, the linear and nonlinear parts of the output are estimated, and two damage indexes (DIs) are proposed. The first DI is built as the ratio of the energy contained in the nonlinear part of an output versus the energy contained in its linear part. The second DI is the angle between the subspaces obtained from the nonlinear parts of two set of outputs after a principal component analysis. The sensitivity of the proposed DIs to the presence of damages as well as their robustness to noise are assessed numerically on spring-mass-damper structures and experimentally on actual composite plates with surface-mounted PZT-elements. Results demonstrate the effectiveness of the proposed method to detect a damage in nonlinear structures and in the presence of noise.

Files in this item

Name:
PIMM-REBILLAT-MSSP-2014.pdf
Size:
830.8Kb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Detection of structural damage using the exponential sine sweep method 
    Communication avec acte
    HAJRYA, Rafik; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (DEStech Publications, Inc., 2013)
    Structural damages can result in nonlinear dynamical responses. Thus, estimating the nonlinearities generated by damages potentially allows detecting them. In this paper, an original approach called the ES2D (Exponential ...
  • Improving Lamb Wave detection for SHM using a dedicated LWDS electronics 
    Communication avec acte
    JAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (NTD, 2019)
    In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ...
  • Laser shock a novel way to generate calibrated delamination in composites: concept and first results 
    Communication avec acte
    GHRIB, Meriem; BERTHE, Laurent; ECAULT, Romain; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (2015)
    Structural Health Monitoring (SHM) has been gaining importance in recent years. SHM aims at providing structures with similar functionality as the biological nervous system and it is organized into four main steps: detection, ...
  • A Probabilistic Multi-class Classifier for Structural Health Monitoring 
    Article dans une revue avec comité de lecture
    URIBE, Juan Sebastian; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (Elsevier, 2015)
    In this paper, a probabilistic multi-class pattern recognition algorithm is developed for damage detection, localization, and quantification in smart mechanical structures. As these structures can face damages of different ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales