Assessment of Digital Image Correlation Measurement Accuracy in the Ultimate Error Regime: Main Results of a Collaborative Benchmark
Article dans une revue avec comité de lecture
Abstract
We report on the main results of a collaborative work devoted to the study of the uncertainties associated with Digital image correlation techniques (DIC). More specifically, the dependence of displacement measurement uncertainties with both image characteristics and DIC parameters is emphasised. A previous work [Bornert et al. (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp. Mech. 49, 353–370] dedicated to situations with spatially fluctuating displacement fields demonstrated the existence of an ‘ultimate error’ regime, insensitive to the mismatch between the shape function and the real displacement field. The present work is focused on this ultimate error. To ensure that there is no mismatch error, synthetic images of in-plane rigid body translation have been analysed. Several DIC softwares developed by or in use in the French community have been used to explore the effects of a large number of settings. The discrepancies between DIC evaluated displacements and prescribed ones have been statistically analysed in terms of random errors and systematic bias, in correlation with the fractional part τ of the displacement component expressed in pixels. Main results are as follows: (i) bias amplitude is almost always insensitive to subset size, (ii) standard deviation of random error increases with noise level and decreases with subset size and (iii) DIC formulations can be split up into two main families regarding bias sensitivity to noise. For the first one, bias amplitude increases with noise while it remains nearly constant for the second one. In addition, for the first family, a strong dependence of random error with τ is observed for noisy images.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureBADULESCU, Claudiu; BORNERT, Michel; DUPRE, Jean Christophe; EQUIS, Sébastien; GREDIAC, Michel; MOLIMARD, Jerome; PICART, Pascal; ROTINAT, René; VALLE, Valéry (Society for Experimental Mechanics, 2013)Optical full-field techniques have a great importance in modern experimental mechanics. Even if they are reasonably spread among the university laboratories, their diffusion in industrial companies remains very narrow for ...
-
Article dans une revue avec comité de lectureCOMMIN, Loreleï; ROTINAT, René; PIERRON, Fabrice; DUMONT, Myriam; MASSE, Jean-Eric; BARRALLIER, Laurent (Elsevier, 2012)Friction stir welding induces a microstructural evolution and residual stresses that will influence the resulting mechanical properties. Friction stir welds produced from magnesium alloy hot rolled plates were studied. ...
-
Article dans une revue avec comité de lectureCOMMIN, Loreleï; ROTINAT, René; PIERRON, Fabrice; DUMONT, Myriam; MASSE, Jean-Eric; BARRALLIER, Laurent (Elsevier, 2011)AZ31 hot rolled magnesium alloy presents a strong basal texture. Using laser beam welding (LBW) as a joining process induces high temperature gradients leading to major texture changes. EBSD was used to study the texture ...
-
Chapitre d'ouvrage scientifiqueROBACH, Odile; KIRCHLECHNER, Christoph; MICHA, Jean Sébastien; ULRICH, M. Olivier; BIQUARD, Xavier; GEAYMOND, M. Olivier; CASTELNAU, Olivier; BORNERT, Michel; PETIT, Johann; SICARDY, Olivier; VILLANOVA, Julie; RIEUTORD, François; BERVEILLER, Sophie (mperial College Press, 2014)This book highlights emerging diffraction studies of strain and dislocation gradients with mesoscale resolution, which is currently a focus of research at laboratories around the world. While ensemble-average diffraction ...
-
Communication avec actePETIT, Johann; BORNERT, Michel; HOFMANN, Felix A.; ROBACH, Odile; MICHA, Jean Sébastien; ULRICH, Olivier; LE BOURLOT, Christophe; FAURIE, Damien; KORSUNSKY, Alexander; CASTELNAU, Olivier (Elsevier, 2012)The X-ray Laue microdiffraction technique, available at beamline BM32 on the synchrotron ESRF, is ideally suited for probing the field of elastic strain (and associated stress) in deformed polycrystalline materials with a ...