Transient growth in the flow past a three-dimensional smooth roughness element
Article dans une revue avec comité de lecture
Date
2013Journal
Journal of Fluid MechanicsAbstract
This work provides a global optimization analysis, looking for perturbations inducing the largest energy growth at a finite time in a boundary-layer flow in the presence of smooth three-dimensional roughness elements. Amplification mechanisms are described which can bypass the asymptotical growth of Tollmien–Schlichting waves. Smooth axisymmetric roughness elements of different height have been studied, at different Reynolds numbers. The results show that even very small roughness elements, inducing only a weak deformation of the base flow, can localize the optimal disturbance characterizing the Blasius boundary-layer flow. Moreover, for large enough bump heights and Reynolds numbers, a strong amplification mechanism has been recovered, inducing an increase of several orders of magnitude of the energy gain with respect to the Blasius case. In particular, the highest value of the energy gain is obtained for an initial varicose perturbation, differently to what found for a streaky parallel flow. Optimal varicose perturbations grow very rapidly by transporting the strong wall-normal shear of the base flow, which is localized in the wake of the bump. Such optimal disturbances are found to lead to transition for initial energies and amplitudes considerably smaller than sinuous optimal ones, inducing hairpin vortices downstream of the roughness element.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; DE TULLIO, Marco; DE PALMA, Pietro; PASCAZIO, Giuseppe (American Society of Mechanical Engineers, 2013)This work provides a three-dimensional energy optimization analysis, looking for perturbations inducing the largest energy growth at a finite time in a boundary-layer flow in the presence of roughness elements. The immersed ...
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe (Cambridge University Press (CUP), 2013)The present work provides an optimal control strategy, based on the nonlinear Navier–Stokes equations, aimed at hampering the rapid growth of unsteady finite-amplitude perturbations in a Blasius boundary-layer flow. A ...
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; DE PALMA, Pietro; ALIZARD, Frédéric; ROBINET, Jean-Christophe (American Institute of Physics, 2010)The three-dimensional stability dynamics of a separation bubble over a flat plate has been studied in both linear and nonlinear conditions. Using a global eigenvalue analysis, two centrifugal global modes are identified: ...
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ROBINET, Jean-Christophe (American Physical Society (APS), 2010)Recent studies have suggested that in some cases transition can be triggered by some purely nonlinear mechanisms. Here we aim at verifying such an hypothesis, looking for a localized perturbation able to lead a boundary-layer ...
-
Article dans une revue avec comité de lectureWe use direct numerical simulations in the presence of free-stream turbulence having different values of intensity, T u, and integral length scale, L, in order to determine which kind of structures are involved in the path ...