• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of projectile nose shape on ballistic resistance of interstitial-free steel sheets

Article dans une revue avec comité de lecture
Author
KPENYIGBA, K. M.
JANKOWIAK, Tomasz
RUSINEK, Alexis
WANG, Bin
ccPESCI, Raphaël
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/9614
DOI
10.1016/j.ijimpeng.2014.10.007
Date
2015
Journal
International Journal of Impact Engineering

Abstract

In this paper an experimental and numerical work is reported concerning the process of perforation of thin steel plates using different projectile nose shapes. The main goal is to analyze how the projectile shape may change the ballistic properties of materials. A wide range of impact velocities from 35 to 180 m/s has been covered during the tests. All the projectiles were 13 mm in diameter and the targets were 1 mm thick, as such the projectile can be regarded as rigid and the target sheets were of interstitial free (IF) steel. The mass ratio (projectile mass/steel sheet mass) and the ratio between the span of the steel sheet and the diameter of the projectile were kept constant, equal to 0.38 and 3.85 respectively. To define the thermoviscoplastic behavior of the target material, the Rusinek-Klepaczko (RK) constitutive model [1] was used. The complete identification of the material constants was done based on a rigorous material characterization. Numerical simulations of some experimental tests were carried out using a non-linear finite element code ABAQUS/Explicit. It was found that the numerical models are able to describe the physical mechanisms in the perforation process with a good accuracy.

Files in this item

Name:
LEM3_IJIMPENG_2014_PESCI.pdf
Size:
3.723Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Thermo-viscoplastic behavior of 304 austenitic stainless steel at various strain rates and temperatures: Testing, modeling and validation 
    Article dans une revue avec comité de lecture
    JIA, Bin; RUSINEK, Alexis; BAHI, Slim; BERNIER, Richard; ccPESCI, Raphaël (Elsevier, 2020)
    This paper presents a systematic study of the thermo-viscoplastic behavior of a 304 austenitic stainless steel (ASS). The experiments were conducted over a wide range of strain rates (10 − 3 s − 1 to 3270 s − 1 ) and ...
  • A novel technique for dynamic shear testing of bulk metals with application to 304 austenitic stainless steel 
    Article dans une revue avec comité de lecture
    JIA, Bin; RUSINEK, Alexis; BERNIER, Richard; BAHI, Slim; WOOD, Paul; ccPESCI, Raphaël (Elsevier, 2020)
    This paper describes a new single-shear specimen (SSS) and method to characterize the dynamic shear behavior of bulk metals using a traditional Split Hopkinson Pressure Bar (SHPB). By this method, the shear behavior of ...
  • Simple shear behavior and constitutive modeling of 304 stainless steel over a wide range of strain rates and temperatures 
    Article dans une revue avec comité de lecture
    JIA, Bin; RUSINEK, Alexis; BERNIER, Richard; BAHI, Slim; BENDARMA, Amine; WOOD, Paul; ccPESCI, Raphaël (Elsevier, 2021)
    A novel single shear specimen (SSS) together with a correction coefficient method is used to study the deformation behavior of a 304 stainless steel under shear loadings. Shear stress-shear strain relations over a wide ...
  • Ballistic behavior of steel sheet subjected to impact and perforation 
    Article dans une revue avec comité de lecture
    JANKOWIAK, Tomasz; RUSINEK, Alexis; KPENYIGBA, K. M.; ccPESCI, Raphaël (Techno-press, 2014)
    The paper is reporting some comparisons between experimental and numerical results in terms of failure mode, failure time and ballistic properties of mild steel sheet. Several projectile shapes have been considered to take ...
  • Influence of projectile shape on dynamic behavior of steel sheet subjected to impact and perforation 
    Article dans une revue avec comité de lecture
    KPENYIGBA, K. M.; JANKOWIAK, Tomasz; RUSINEK, Alexis; ccPESCI, Raphaël (Elsevier, 2013)
    The paper describes a work focused on the process of perforation of steel sheet.Experimental,analytical and numerical investigations have been carried out to analyze in details the perforation process.Based on these ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales