A generic statistical methodology to predict the maximum pit depth of a localized corrosion process
Article dans une revue avec comité de lecture
Auteur
Date
2011Journal
Corrosion ScienceRésumé
This paper outlines a new methodology to predict accurately the maximum pit depth related to a localized corrosion process. It combines two statistical methods: the Generalized Lambda Distribution (GLD), to determine a model of distribution fitting with the experimental frequency distribution of depths, and the Computer Based Bootstrap Method (CBBM), to generate simulated distributions equivalent to the experimental one. In comparison with conventionally established statistical methods that are restricted to the use of inferred distributions constrained by specific mathematical assumptions, the major advantage of the methodology presented in this paper is that both the GLD and the CBBM enable a statistical treatment of the experimental data without making any preconceived choice neither on the unknown theoretical parent underlying distribution of pit depth which characterizes the global corrosion phenomenon nor on the unknown associated theoretical extreme value distribution which characterizes the deepest pits. Considering an experimental distribution of depths of pits produced on an aluminium sample, estimations of maximum pit depth using a GLD model are compared to similar estimations based on usual Gumbel and Generalized Extreme Value (GEV) methods proposed in the corrosion engineering literature. The GLD approach is shown having smaller bias and dispersion in the estimation of the maximum pit depth than the Gumbel approach both for its realization and mean. This leads to comparing the GLD approach to the GEV one. The former is shown to be relevant and its advantages are discussed compared to previous methods.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureJARRAH, Adil; NIANGA, Jean-Marie; IOST, Alain; GUILLEMOT, Gildas; NAJJAR, Denis (Elsevier, 2010)A statistical methodology for detecting pits interactions based on a two-dimensional spectral analysis is presented. This method can be used as a tool for the exploratory analysis of spatial point patterns and can be ...
-
Communication avec acteIOST, Alain; ZAHOUANI, Hassan; ANSELME, Karine; NAJJAR, Denis; GUILLEMOT, Gildas; HAGEGE, Benjamin; JOURANI, Abdeljalil; REVEL, Phllippe; MAZERAN, Pierre-Emmanuel; BIGERELLE, Maxence; EL MANSORI, Mohamed; COOREVITS, Thierry (Université de Poitiers, 2007)L'objet principal des études en morphologie des surfaces consiste à résumer l'information de manière optimale. Dans nos études, nous étudions plus particulièrement la signification physique, les méthodes numériques et les ...
-
Article dans une revue avec comité de lectureBIGERELLE, Maxence; NIANGA, Jean-Marie; NAJJAR, D.; IOST, Alain; HUBERT, C.; KUBIAK, K. J. (Elsevier, 2013)This paper proposes a new method of roughness peaks curvature radii calculation and its application to tribological contact analysis as characteristic signature of tribological contact. This method is introduced via the ...
-
Article dans une revue avec comité de lectureBIGERELLE, Maxence; NIANGA, Jean-Marie; IOST, Alain (Elsevier, 2015)The purpose of this paper is to analyze the turning machinability of a martensitic steel, according to the cutting speed, and through signal analyses of the morphology of the machined surface. We initially carried out the ...
-
Article dans une revue avec comité de lectureIOST, Alain; GUILLEMOT, Gildas; RUDERMANN, Yann; BIGERELLE, Maxence (ELSEVIER, 2012)Instrumented indentation is widely used to characterize and compare the mechanical properties of coatings. However, the interpretation of such measurements is not trivial for very thin films because the hardness value ...