In situ damage mechanisms investigation of PA66/GF30 composite: Effect of relative humidity
Article dans une revue avec comité de lecture
Date
2014Journal
Composites Part B: EngineeringAbstract
Damage mechanisms of injection molded polyamide-66/short glass fiber 30 wt% composite (PA66/GF30) were analyzed using in situ SEM mechanical tests on specimens conditioned under three relative humidity contents (RH = 0%, 50% and 100%). The validity of these in situ analyses was confirmed by Xray micro-computed tomography (lCT) observations on tensile loaded specimens. Experimental results demonstrated that relative humidity (RH) conditions influence strongly the damage level and damage mechanisms. Indeed, for specimen with RH = 0%, damage initiation occurs at significantly higher load level than those in RH = 50% and RH = 100% specimens. The higher relative humidity condition also results in higher damage level. Damage chronologies have been proposed as damage initiation in the form of fiber–matrix debonding occurs at fiber ends and more generally at locations where fibers are close to each other due to the generation of local stress concentration (for all studied RH contents), and first fiber breakages occur (RH = 0%). These debonded zones further propagate through fiber–matrix interface (for all studied RH contents), and new fiber breakages develop (RH = 0%). At high relative flexural stress, matrix microcracks appear and grow regardless the RH contents. For RH = 100%, these microcracks are also accompanied by many matrix deformation bands. Subsequently, they lead to the damage accumulation and then to the final failure.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteThis work presents a new micromechanical fatigue damage model for reinforced thermoplastic composites. The study aims at modeling high cycle fatigue damage of a short glass fiber reinforced polyamide-66. The developed ...
-
Communication avec acteInjection molded polyamide composite reinforced with short glass fibers has been widely used in automotive industry due to its high strength to weight ratio and the ability of injection process to produce complex parts. A ...
-
Article dans une revue avec comité de lectureARIF, Muhamad Fatikul; CHEMISKY, Yves; ROBERT, Gilles; FITOUSSI, Joseph; MERAGHNI, Fodil; SAINTIER, Nicolas (Elsevier, 2014)This paper aims at studying fatigue damage behavior of injection molded 30 wt% short glass fiber reinforced polyamide-66 composite (PA66/GF30). The evolution of dynamic modulus, hysteresis area, cyclic creep and temperature ...
-
Conférence invitéeARIF, Muhamad Fatikul; MERAGHNI, Fodil; SAINTIER, Nicolas; CHEMISKY, Yves; FITOUSSI, Joseph; ROBERT, Gilles (2014)Damage behavior of dry as molded, 30 wt% short glass fiber reinforced polyamide-66 (PA66/GF30) under fatigue loading has been investigated by X-ray micro-computed tomography (μCT). Based on visual observation on μCT images, ...
-
Communication avec acteDESPRINGRE, Nicolas; CHEMISKY, Yves; ROBERT, Gilles; MERAGHNI, Fodil (Ibrahim Karaman, Raymundo Arróyave and Eyad Masad / Wiley, 2015)This work presents a micromechanical fatigue damage model developed for short glass fiber reinforced PA66. It has been developed to predict the high cycle fatigue behavior of PA66/GF30. The model is based on an extended ...