• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

From Driving Simulation to Virtual Reality

Communication avec acte
Author
KEMENY, Andras
22594 Laboratoire Electronique, Informatique et Image [UMR6306] [Le2i]
121997 Centre Technique de Simulation
133641 Technocentre Renault [Guyancourt]

URI
http://hdl.handle.net/10985/9454
Date
2014

Abstract

Driving simulation from the very beginning of the advent of VR technology uses the very same technology for visualization and similar technology for head movement tracking and high end 3D vision. They also share the same or similar difficulties in rendering movements of the observer in the virtual environments. The visual-vestibular conflict, due to the discrepancies perceived by the human visual and vestibular systems, induce the so-called simulation sickness, when driving or displacing using a control device (ex. Joystick). Another cause for simulation sickness is the transport delay, the delay between the action and the corresponding rendering cues. Another similarity between driving simulation and VR is need for correct scale 1:1 perception. Correct perception of speed and acceleration in driving simulation is crucial for automotive experiments for Advances Driver Aid System (ADAS) as vehicle behavior has to be simulated correctly and anywhere where the correct mental workload is an issue as real immersion and driver attention is depending on it. Correct perception of distances and object size is crucial using HMDs or CAVEs, especially as their use is frequently involving digital mockup validation for design, architecture or interior and exterior lighting. Today, the advents of high resolution 4K digital display technology allows near eye resolution stereoscopic 3D walls and integrate them in high performance CAVEs. High performance CAVEs now can be used for vehicle ergonomics, styling, interior lighting and perceived quality. The first CAVE in France, built in 2001 at Arts et Metiers ParisTech, is a 4 sided CAVE with a modifiable geometry with now traditional display technology. The latest one is Renault’s 70M 3D pixel 5 sides CAVE with 4K x 4K walls and floor and with a cluster of 20 PCs. Another equipment recently designed at Renault is the motion based CARDS driving simulator with CAVE like 4 sides display system providing full 3D immersion for the driver. The separation between driving simulation and digital mockup design review is now fading though different uses will require different simulation configurations. New application domains, such as automotive AR design, will bring combined features of VR and driving simulation technics, including CAVE like display system equipped driving simulators.

Files in this item

Name:
LE2I_VRIC_2014_KEMENY.pdf
Size:
511.2Kb
Format:
PDF
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Influence of a new discrete-time LQR-based motion cueing on driving simulator 
    Article dans une revue avec comité de lecture
    AYKENT, Baris; MERIENNE, Frédéric; PAILLOT, Damien; KEMENY, Andras (Wiley, 2013-07-15)
    This study proposes a method and an experimental validation to analyze dynamics response of the simulator's cabin and platform with respect to the type of the control used in the hexapod driving simulator. In this article, ...
  • The Influence of the feedback control of the hexapod platform of the SAAM dynamic driving simulator on neuromuscular dynamics of the drivers 
    Communication sans acte
    AYKENT, Baris; PAILLOT, Damien; MERIENNE, Frédéric; KEMENY, Andras (DSC, 2012-09-06)
    Simulation has been an increasingly important tool for the development and evaluation of vehicle systems [Kol20]. Driving simulators offer the benefit of reducing development efforts, time and costs for many applications. ...
  • Motion sickness evaluation and comparison for a static driving simulator and a dynamic driving simulator 
    Article dans une revue avec comité de lecture
    AYKENT, Baris; MERIENNE, Frédéric; GUILLET, Christophe; PAILLOT, Damien; KEMENY, Andras (SAGE Publications, 2014-01-27)
    This paper deals with driving simulation and in particular with the important issue of motion sickness. The paper proposes a methodology to evaluate the objective illness rating metrics deduced from the motion sickness ...
  • A LQR Washout Algorithm for a Driving Simulator Equipped with a Hexapod Platform: The Relationship of Neuromuscular Dynamics with the Sensed Illness Rating 
    Communication avec acte
    AYKENT, Baris; PAILLOT, Damien; MERIENNE, Frédéric; KEMENY, Andras (2012-07-05)
    This study proposes a method and an experimental validation to analyze dynamics response of the drivers with respect to the type of the control used in the hexapod driving simulator. In this article, two different forms ...
  • The role of motion platform on postural instability and head vibration exposure at driving simulators 
    Article dans une revue avec comité de lecture
    AYKENT, Baris; PAILLOT, Damien; KEMENY, Andras; ccMERIENNE, Frédéric (Elsevier, 2013)
    This paper explains the effect of a motion platform for driving simulators on postural instability and head vibration exposure. The sensed head level-vehicle (visual cues) level longitudinal and lateral accelerations ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales