Influence of the size and skin thickness of apple varieties on the retrieval of internal optical properties using Vis/NIR spectroscopy: A Monte Carlo-based study
Article dans une revue avec comité de lecture
Date
2015Journal
Computers and Electronics in AgricultureRésumé
Visible/near-infrared spectroscopy is a well-established method to measure optical properties of tissues, assuming that a light propagation model can be used to recover absorption and reduced scattering coefficients from non-invasive probing. Spectroscopic measurements have achieved success in non-destructive assessment of apple optical properties and quality attributes. However, the spectroscopy of apples must consider the size of the fruit and the presence of the thin skin layer that surrounds the flesh, to correctly read the signals acquired on the boundary. In this research, the fruit was modelled as a two layer spherical structure with various radii and finite thickness of the upper skin layer. Monte Carlo computations were performed to generate time-resolved reflectance and spatially-resolved reflectance measurements. Simulated data were then fitted using a procedure based on Levenberg–Marquardt algorithm with specific semi-infinite models. The errors in the retrieved optical properties of the flesh (absorption coefficient μa, and reduced scattering coefficient μ′s) were studied as functions of apple radius, skin thickness, and source–detector distance, for given optical parameter sets assigned to the flesh and the skin. The results suggest that the time-resolved reflectance spectroscopy may probe optical properties of the flesh regardless of the skin layer, when a sufficient source–detector distance (15 mm) is used for the measurements. Similar results were found in case of using the spatially resolved spectroscopy, because measurements extend up to 15–29 mm by steps of 1 mm or 2 mm. The computations also show that the curvature of the boundary has noticeable effect on the errors in the retrieved optical coefficients of the flesh. However, results from time-resolved spectroscopy are more influenced by the size of apples, compared with the spatially-resolved spectroscopy.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureVAUDELLE, Fabrice; L'HUILLIER, Jean-Pierre (Elsevier, 2013)Fluorescence-enhanced optical imaging based on near-infrared light provides a promising tool to differentiate diseased lesions from normal tissue. However, the measurement sensitivity of the fluorescence signals acquired ...
-
Communication avec acteVAUDELLE, Fabrice; ASKOURA, Mohamed Lamine; L'HUILLIER, Jean-Pierre (The Society of Photo-Optical Instrumentation Engineers (SPIE), 2015)The non-invasive research of information inside the biological tissues can be made by means of continuous, time dependent or frequency modulated light source, emitting in the visible or infrared range. Moreover, the ...
-
Article dans une revue avec comité de lectureASKOURA, Mohamed Lamine; VAUDELLE, Fabrice; L'HUILLIER, Jean-Pierre (MDPI, 2016)This work aimed at high lighting the role played by the skin in the light propagation through the apple flesh. A multispectral Visible-Near Infrared (Vis-NIR) steady-state imaging setup based on the use of four continuous ...
-
Multispectral measurement of scattering-angular light distribution in apple skin and flesh samples Article dans une revue avec comité de lectureASKOURA, Mohamed Lamine; VAUDELLE, Fabrice; L'HUILLIER, Jean-Pierre (Optical Society of America, 2016)Knowledge of the optical properties of apple tissues such as skin and flesh is essential to better understand the light–tissue interaction process and to apply optical methods for apple quality inspection. This work aimed ...
-
Article dans une revue avec comité de lectureVAUDELLE, Fabrice; L'HUILLIER, Jean-Pierre; ASKOURA, Mohamed Lamine (Elsevier, 2017)Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information ...