Numerical Study of Multistage Transcritical Organic Rankine Cycle Axial Turbines
Article dans une revue avec comité de lecture
Date
2014Journal
Journal of Engineering for Gas Turbines and PowerAbstract
Transonic flows through axial, multi-stage, transcritical ORC turbines, are investigated by using a numerical solver including advanced multiparameter equations of state and a high-order discretization scheme. The working fluids in use are the refrigerants R134a and R245fa, classified as dense gases due to their complex molecules and relatively high molecular weight. Both inviscid and viscous numerical simulations are carried out to quantify the impact of dense gas effects and viscous effects on turbine performance. Both supercritical and subcritical inlet conditions are studied for the considered working fluids. In the former case, flow across the turbine is transcritical, since turbine output pressure is subcritical. Numerical results show that, due to dense gas effects characterizing the flow at supercritical inlet conditions, supercritical ORC turbines enable, for a given pressure ratio, a higher isentropic efficiency than subcritical turbines using the same working fluid. Moreover, for the selected operating conditions, R134a provides a better performance than R245fa.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureGLOERFELT, Xavier; ROBINET, Jean-Christophe; SCIACOVELLI, Luca; CINNELLA, Paola; GRASSO, Francesco (Cambridge University Press (CUP), 2020)A study of dense-gas effects on the stability of compressible boundary-layer flows is conducted. From the laminar similarity solution, the temperature variations are small due to the high specific heat of dense gases, ...
-
Article dans une revue avec comité de lectureSCIACOVELLI, Luca; CINNELLA, Paola; GRASSO, Francesco (Cambridge University Press (CUP), 2017)The present paper investigates the influence of dense gases governed by complex equations of state on the dynamics of homogeneous isotropic turbulence. In particular, we investigate how differences due to the complex ...
-
Article dans une revue avec comité de lectureSCIACOVELLI, Luca; CINNELLA, Paola; CONTENT, C.; GRASSO, Francesco (Cambridge University Press (CUP), 2016)A detailed numerical study of the influence of dense gas effects on the large-scale dynamics of decaying homogeneous isotropic turbulence is carried out by using the van der Waals gas model. More specifically, we focus on ...
-
Article dans une revue avec comité de lectureSCIACOVELLI, Luca; GLOERFELT, Xavier; PASSIATORE, Donatella; CINNELLA, Paola; GRASSO, Francesco (Springer, 2020-03)High-speed turbulent boundary layers of a dense gas (PP11) and a perfect gas (air) over flat plates are investigated by means of direct numerical simulations and large eddy simulations. The thermodynamic conditions of the ...
-
Article dans une revue avec comité de lectureSCIACOVELLI, Luca; CINNELLA, Paola; GLOERFELT, Xavier (Springer Verlag (Germany), 2018)Dense gas effects, encountered in many engineering applications, lead to unconventional variations of the thermodynamic and transport properties in the supersonic flow regime, which in turn are responsible for considerable ...