Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers
Article dans une revue avec comité de lecture
Date
2022-04-28Journal
Journal of Fluid MechanicsAbstract
A hypersonic, spatially evolving turbulent boundary layer at Mach 12.48 with a cooled wall is analysed by means of direct numerical simulations. At the selected conditions, massive kinetic-to-internal energy conversion triggers thermal and chemical non-equilibrium phenomena. Air is assumed to behave as a five-species reacting mixture, and a two-temperaturemodel is adopted to account for vibrational non-equilibrium.Wall cooling partly counteracts the effects of friction heating, and the temperature rise in the boundary layer excites vibrational energy modes while inducing mild chemical dissociation of oxygen. Vibrational non-equilibrium is mostly driven by molecular nitrogen, characterized by slower relaxation rates than the other molecules in the mixture. The results reveal that thermal non-equilibrium is sustained by turbulent mixing: sweep and ejection events efficiently redistribute the gas, contributing to the generation of a vibrationally under-excited state close to the wall, and an over-excited state in the outer region of the boundary layer. The tight coupling between turbulence and thermal effects is quantified by defining an interaction indicator. A modelling strategy for the vibrational energy turbulent
flux is proposed, based on the definition of a vibrational turbulent Prandtl number. The validity of the strong Reynolds analogy under thermal non-equilibrium is also evaluated.
Strong compressibility effects promote the translational–vibrational energy exchange, but no preferential correlation was detected between expansions/compressions and vibrational over-/under-excitation, as opposed to what has been observed for unconfined turbulent configurations.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteA high-order shock-capturing finite-difference scheme for scale-resolving numerical simulations of hypersonic high-enthalpy flows, involving thermal non-equilibrium effects, is presented. The suitability of the numerical ...
-
Communication avec actePASSIATORE, Donatella; SCIACOVELLI, Luca; CINNELLA, Paola; PASCAZIO, Giuseppe (3AF, Association Aéronautique et Astronautique de France, 2021-04)The influence of high-enthalpy effects in hypersonic, spatially developing boundary layers is investigated by means of direct numerical simulations. The flow of a reacting mixture of nitrogen and oxygen over a flat plate ...
-
Communication avec actePASSIATORE, Donatella; SCIACOVELLI, Luca; CINNELLA, Paola; PASCAZIO, Giuseppe (3AF, Association Aéronautique et Astronautique de France, 2023-03-29)The dynamics of a shock wave impinging on a freestream-perturbed high-enthalpy boundary layer is investigated by means of direct numerical simulation. The oblique shock impacts on a cooled flat-plate boundary layer with ...
-
Communication sans actePASSIATORE, Donatella; SCIACOVELLI, Luca; PASCAZIO, Giuseppe; CINNELLA, Paola (IUTAM, International Union of Theoretical and Applied Mechanics, 2021-08)The influence of high-temperature effects on compressible wall-bounded turbulence is investigated by means of a direct numerical simulation of a hypersonic, chemically out-of-equilibrium, turbulent boundary layer. The ...
-
Communication avec actePASSIATORE, Donatella; SCIACOVELLI, Luca; CINNELLA, Paola; PASCAZIO, Giuseppe (Council of the Aeronautical Sciences, 2022-11)A hypersonic turbulent boundary layer over a flat plate is numerically investigated. The large Mach number and temperature values in the freestream (M e = 12.48 and T e = 594.3 K, respectively) lead to a high-enthalpy ...