• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers

Article dans une revue avec comité de lecture
Author
PASSIATORE, Donatella
CINNELLA, Paola
541882 Institut Jean Le Rond d'Alembert [DALEMBERT]
GIUSEPPE, Pascazio
ccSCIACOVELLI, Luca
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/21900
DOI
10.1017/jfm.2022.283
Date
2022-04-28
Journal
Journal of Fluid Mechanics

Abstract

A hypersonic, spatially evolving turbulent boundary layer at Mach 12.48 with a cooled wall is analysed by means of direct numerical simulations. At the selected conditions, massive kinetic-to-internal energy conversion triggers thermal and chemical non-equilibrium phenomena. Air is assumed to behave as a five-species reacting mixture, and a two-temperaturemodel is adopted to account for vibrational non-equilibrium.Wall cooling partly counteracts the effects of friction heating, and the temperature rise in the boundary layer excites vibrational energy modes while inducing mild chemical dissociation of oxygen. Vibrational non-equilibrium is mostly driven by molecular nitrogen, characterized by slower relaxation rates than the other molecules in the mixture. The results reveal that thermal non-equilibrium is sustained by turbulent mixing: sweep and ejection events efficiently redistribute the gas, contributing to the generation of a vibrationally under-excited state close to the wall, and an over-excited state in the outer region of the boundary layer. The tight coupling between turbulence and thermal effects is quantified by defining an interaction indicator. A modelling strategy for the vibrational energy turbulent flux is proposed, based on the definition of a vibrational turbulent Prandtl number. The validity of the strong Reynolds analogy under thermal non-equilibrium is also evaluated. Strong compressibility effects promote the translational–vibrational energy exchange, but no preferential correlation was detected between expansions/compressions and vibrational over-/under-excitation, as opposed to what has been observed for unconfined turbulent configurations.

Files in this item

Name:
DynFluid_JFM_2022_PASSIATORE.pdf
Size:
3.509Mb
Format:
PDF
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • A high-order scheme for the numerical simulation of high-enthalpy hypersonic flows 
    Communication avec acte
    ccPASSIATORE, Donatella; ccSCIACOVELLI, Luca; ccCINNELLA, Paola; ccPASCAZIO, Giuseppe (ICCFD, 2022-07)
    A high-order shock-capturing finite-difference scheme for scale-resolving numerical simulations of hypersonic high-enthalpy flows, involving thermal non-equilibrium effects, is presented. The suitability of the numerical ...
  • Direct Numerical Simulation of a hypersonic boundary layer in chemical non-equilibrium 
    Communication avec acte
    ccPASSIATORE, Donatella; ccSCIACOVELLI, Luca; ccCINNELLA, Paola; ccPASCAZIO, Giuseppe (3AF, Association Aéronautique et Astronautique de France, 2021-04)
    The influence of high-enthalpy effects in hypersonic, spatially developing boundary layers is investigated by means of direct numerical simulations. The flow of a reacting mixture of nitrogen and oxygen over a flat plate ...
  • Direct Numerical Simulation of hypersonic boundary layers in chemical non-equilibrium 
    Communication sans acte
    ccPASSIATORE, Donatella; ccSCIACOVELLI, Luca; ccPASCAZIO, Giuseppe; ccCINNELLA, Paola (IUTAM, International Union of Theoretical and Applied Mechanics, 2021-08)
    The influence of high-temperature effects on compressible wall-bounded turbulence is investigated by means of a direct numerical simulation of a hypersonic, chemically out-of-equilibrium, turbulent boundary layer. The ...
  • Numerical investigation of hypersonic turbulent boundary layers with high-temperature effects 
    Communication avec acte
    ccPASSIATORE, Donatella; ccSCIACOVELLI, Luca; ccCINNELLA, Paola; ccPASCAZIO, Giuseppe (Council of the Aeronautical Sciences, 2022-11)
    A hypersonic turbulent boundary layer over a flat plate is numerically investigated. The large Mach number and temperature values in the freestream (M e = 12.48 and T e = 594.3 K, respectively) lead to a high-enthalpy ...
  • Shock-wave/boundary layer interaction at high enthalpies 
    Communication avec acte
    ccPASSIATORE, Donatella; ccSCIACOVELLI, Luca; ccCINNELLA, Paola; ccPASCAZIO, Giuseppe (3AF, Association Aéronautique et Astronautique de France, 2023-03-29)
    The dynamics of a shock wave impinging on a freestream-perturbed high-enthalpy boundary layer is investigated by means of direct numerical simulation. The oblique shock impacts on a cooled flat-plate boundary layer with ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales