Kinetic Theory Microstructure Modeling in Concentrated Suspensions
Article dans une revue avec comité de lecture
Abstract
When suspensions involving rigid rods become too concentrated, standard dilute theories fail to describe their behavior. Rich microstructures involving complex clusters are observed, and no model allows describing its kinematics and rheological effects. In previous works the authors propose a first attempt to describe such clusters from a micromechanical model, but neither its validity nor the rheological effects were addressed. Later, authors applied this model for fitting the rheological measurements in concentrated suspensions of carbon nanotubes (CNTs) by assuming a rheo-thinning behavior at the constitutive law level. However, three major issues were never addressed until now: (i) the validation of the micromechanical model by direct numerical simulation; (ii) the establishment of a general enough multi-scale kinetic theory description, taking into account interaction, diffusion and elastic effects; and (iii) proposing a numerical technique able to solve the kinetic theory description. This paper focuses on these three major issues, proving the validity of the micromechanical model, establishing a multi-scale kinetic theory description and, then, solving it by using an advanced and efficient separated representation of the cluster distribution function. These three aspects, never until now addressed in the past, constitute the main originality and the major contribution of the present paper.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lecturePEREZ, Marta; ABISSET-CHAVANNE, Emmanuelle; BARASINSKI, Anais; CHINESTA SORIA, Francisco; AMMAR, Amine; KEUNINGS, Roland (SpringerOpen, 2015)Nanocomposites allow for a significant enhancement of functional properties, in particular electrical conduction. In order to optimize materials and parts, predictive models are required to evaluate particle distribution ...
-
Article dans une revue avec comité de lectureAMMAR, Amine; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco; KEUNINGS, Roland (Springer Verlag, 2016)Permeability is the fundamental macroscopic material property needed to quantify the flow in a fibrous medium viewed as a porous medium. Composite processing models require the permeability as input data to predict flow ...
-
Article dans une revue avec comité de lectureZGHAL, Jihed; AMMAR, Amine; CHINESTA SORIA, Francisco; BINETRUY, Christophe; ABISSET-CHAVANNE, Emmanuelle (Elsevier, 2017)Several studies showed that thin-plies composite laminates apparently exhibit higher strength than its counterpart using thicker plies. In this work, a high-resolution numerical discretization based on the use of ...
-
Article dans une revue avec comité de lecturePEREZ, Marta; SCHEUER, Adrien; KEUNINGS, Roland; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; CHINESTA SORIA, Francisco (Springer Verlag, 2019)When addressing the flow of concentrated suspensions composed of rods, dense clusters are observed. Thus, the adequate modelling and simulation of such a flow requires addressing the kinematics of these dense clusters and ...
-
Article dans une revue avec comité de lectureGHNATIOS, Chady; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; CUETO, Elias; DUVAL, Jean-Louis; CHINESTA SORIA, Francisco (Elsevier, 2019)This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The ...