• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
  • Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On signal denoising by EMD in the frequency domain

Communication avec acte
Author
BAY-AHMED, Hadj-Ahmed
KOMATY, Ali
DARE-EMZIVAT, Delphine
13094 Institut de Recherche de l'Ecole Navale [IRENAV]
ccBOUDRAA, Abdel-Ouahab

URI
http://hdl.handle.net/10985/10293
Date
2015

Abstract

In this work a new denoising scheme based on the empirical mode decomposition associated with a frequency analysis is introduced. Compared to classical approaches where the extracted modes are thresholded in time domain, in the proposed strategy the thresholding is done in the frequency domain. Each mode is divided into blocks of equal length where the frequency content of each one is analyzed. Relevant modes are identified using an energy and a frequency thresholds obtained by training. The denoised signal is obtained by the superposition of the thresholded modes. The effectiveness of the proposed scheme is illustrated on synthetic and real signals and the results compared to those of methods reported recently.

Files in this item

Name:
1570105083.pdf
Size:
1.284Mb
Format:
PDF
View/Open

Collections

  • Institut de Recherche de l’École navale (IRENAV)

Related items

Showing items related by title, author, creator and subject.

  • A Joint Spectral Similarity Measure for Graphs Classification 
    Article dans une revue avec comité de lecture
    BAY-AHMED, Hadj-Ahmed; ccBOUDRAA, Abdel-Ouahab; DARE-EMZIVAT, Delphine (Elsevier, 2019)
    In spite of the simple linear relationship between the adjacency A and the Laplacian L matrices, L=D-A where D is the degrees matrix, these matrices seem to reveal informations about the graph in different ways, where it ...
  • Graph Signals Classification Using Total Variation and Graph Energy Informations 
    Communication avec acte
    BAY-AHMED, Hadj-Ahmed; DARE-EMZIVAT, Delphine; ccBOUDRAA, Abdel-Ouahab (2017)
    In this work, we consider the problem of graph signals classification. We investigate the relevance of two attributes, namely the total variation (TV) and the graph energy (GE) for graph signals classification. The TV is ...
  • Classification des Signaux sur Graphes par Mesures Spectrales Algébriques 
    Communication avec acte
    BAY-AHMED, Hadj-Ahmed; ccBOUDRAA, Abdel-Ouahab; DARE-EMZIVAT, Delphine; PREAUX, Yves (2017)
    La notion de mesure de similarité est très importante dans de nombreux domaines tels que l’apprentissage statistique, la fouille de données ou les sciences cognitives. Dans cet article, nous nous intéressons à la similarité ...
  • Analyse de la vulnérabilité d’un réseau via la mesure de l’entropie de Von Neumann. 
    Communication avec acte
    BAY-AHMED, Hadj-Ahmed; DARE-EMZIVAT, Delphine; ccBOUDRAA, Abdel-Ouahab (GRETSI, 2019-09)
    In this work, we present a new strategy for measuring the vulnerability of network connections, modeled by a graph, via the variations of the Von Neumann entropy of the density matrix associated to this graph, this one ...
  • Débruitage fréquentiel de signaux par EMD 
    Communication avec acte
    KOMATY, Ali; DARE-EMZIVAT, Delphine; ccBOUDRAA, Abdel-Ouahab (2013)
    Dans cet article, nous proposons un nouveau schéma de débruitage des signaux basé sur la décomposition modale empirique associée à une analyse fréquentielle. Le principe de l’approche consiste à seuiller les modes extraits ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales