A quasi-static stability analysis for Biot’s equation and standard dissipative systems
Article dans une revue avec comité de lecture
URI
http://www.sciencedirect.com/science/article/pii/S0997753806000799http://hdl.handle.net/10985/10335
Date
2007Journal
European Journal of Mechanics - A/SolidsRésumé
In this paper, an extended version of Biot's differential equation is considered in order to discuss the quasi-static stability of a response for a solid in the framework of generalized standard materials. The same equation also holds for gradient theories since the gradients of arbitrary order of the state variables and of their rates can be introduced in the expression of the energy and of the dissipation potentials. The stability of a quasi-static response of a system governed by Biot's equations is discussed. Two approaches are considered, by direct estimates and by linearizations. The approach by direct estimates can be applied in visco-plasticity as well as in plasticity. A sufficient condition of stability is proposed and based upon the positivity of the second variation of energy along the considered response. This is an extension of the criterion of second variation, well known in elastic buckling, into the study of the stability of a response. The linearization approach is available only for smooth dissipation potentials, i.e. for the study of visco-elastic solids and leads to a result on asymptotic stability. The paper is illustrated by a simple example.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteCette étude est consacrée à la stabilité de la réponse quasi-statique de systèmes standard dissipatifs (visco-élastiques, visco-plastiques ou élasto-plastiques). Dans le cas de solides visqueux (visco-élastiques ou ...
-
Article dans une revue avec comité de lectureIn an incremental formulation suitable to numerical implementation, the use of rate-independent theory of crystal plasticity essentially leads to four fundamental problems. The first is to determine the set of potentially ...
-
Communication avec acteIt is well known that both damage and plastic anisotropy strongly affect the ductility limit of thin metal sheets. Due to the manufacturing processes, initial defects, such as inclusions and voids, are commonly present in ...
-
Article dans une revue avec comité de lectureZHU, Jianchang;
BEN BETTAIEB, Mohamed; LI, Zhenhuan;
ABED-MERAIM, Farid; HUANG, Minsheng (Springer Science and Business Media LLC, 2025-03)
Non-Schmid (NS) effects in body-centered cubic (BCC) single-phase metals have received special attention in recent years. However, a deep understanding of these effects in the BCC phase of dual-phase (DP) steels has not ... -
Article dans une revue avec comité de lectureBuckling and wrinkling of thin structures often lead to very complex response curves that are hard to follow by standard path-following techniques, especially for very thin membranes in a slack or nearly slack state. Many ...
