• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • Voir le document
  • Accueil de SAM
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Very High Cycle Fatigue for single phase ductile materials: slip band appearance criterion

Communication avec acte
Auteur
PHUNG, Ngoc-Lam
MARTI, Nicolas
BLANCHE, Antoine
693 Laboratoire de Mécanique et Génie Civil [LMGC]
ccRANC, Nicolas
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccFAVIER, Véronique
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
CHRYSOCHOOS, André
693 Laboratoire de Mécanique et Génie Civil [LMGC]
ccSAINTIER, Nicolas
1002421 Institut de Mécanique et d'Ingénierie [I2M]
GREGORI, Fabienne
233425 Laboratoire des Sciences des Procédés et des Matériaux [LSPM]
BACROIX, Brigitte
233425 Laboratoire des Sciences des Procédés et des Matériaux [LSPM]
THOQUENNE, Guillaume

URI
http://hdl.handle.net/10985/10495
DOI
10.1016/j.proeng.2013.12.113
Date
2013

Résumé

The DISFAT project is a French project financially supported by the French National Agency for Research (ANR). It aims at a deeper understanding of mechanisms leading to crack initiation in metals and alloys under Very High Cycle Fatigue loading (VHCF). The VHCF regime is associated with stress magnitudes lower than the conventional fatigue limit and as a result, numbers of cycles higher than 109. Tests were carried out using an ultrasonic technique at loading frequency of 20 kHz. In the case of pure copper polycrystals, we previously showed that slip band (SB) activity and intrinsic dissipation were closely related. Dissipation and slip band amount increased with the number of cycles. At very small stress amplitudes, no slip band appeared at the specimen surface up to 108 cycles but the material was found to dissipate energy. These results revealed that the material never reached a steady state and so could break at higher number of cycles. In this paper, the morphology and the location of slip bands were characterized. Different types of slip bands depending on the stress amplitudes appeared at the specimen surface. The stress amplitude required to show the first slip bands decreases with the number of cycles. It is twice lower than the stress amplitude required to break the specimen for the same number of cycles. At the smallest stress amplitudes, slip bands were mostly found at twin boundaries. Quasi 3D finite element simulations taking into account the polycrystalline nature of the material emphasized the key role of the elastic anisotropy in slip band initiation. A criterion for slip band appearance was finally proposed.

Fichier(s) constituant cette publication

Nom:
DUMAS_PE_SAINTIER_2013.pdf
Taille:
3.389Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Correlation of the low and high frequency fatigue responses of pure polycrystalline copper with mechanisms of slip band formation 
    Article dans une revue avec comité de lecture
    MARTI, Nicolas; GREGORI, Fabienne; ccFAVIER, Véronique; ccSAINTIER, Nicolas (Elsevier, 2020)
    Ultrasonic fatigue testing at 20 kHz was developed to accelerate fatigue tests and explore the very high cycle fatigue range. However, the use of ultrasonic fatigue systems raises the open question of the impact of frequency ...
  • Dissipation Assessments During Dynamic Very High Cycle Fatigue Tests 
    Article dans une revue avec comité de lecture
    BLANCHE, Antoine; CHRYSOCHOOS, André; ccRANC, Nicolas; ccFAVIER, Véronique (Society for Experimental Mechanics, 2015)
    This paper presents an experimental device developed to detect and estimate dissipated energy during very high cycle fatigue tests (VHCF) at high loading frequency (20 kHz) and low stress (i.e. far below the yield stress). ...
  • Very high cycle fatigue for single phase ductile materials: Comparison between α-iron, copper and α-brass polycrystals 
    Article dans une revue avec comité de lecture
    BLANCHE, Antoine; WANG, Chong; PHUNG, Ngoclam; WAGNER, Daniele; BATHÌAS, Claude; CHRYSOCHOOS, André; MUGHRABI, Haeel; ccRANC, Nicolas; ccFAVIER, Véronique (Elsevier, 2016)
    In this paper, the main results obtained in the framework of a National French Agency project called DISFAT, standing for “Dissipation in Fatigue”, are presented. The project was dedicated to the microplastic mechanisms ...
  • Evaluating Schmid criterion for predicting preferential locations of persistent slip markings obtained after very high cycle fatigue for polycrystalline pure copper 
    Article dans une revue avec comité de lecture
    PHUNG, Ngoc-Lam; ccFAVIER, Véronique; ccRANC, Nicolas (Elsevier, 2015)
    Very high cycle fatigue carried out on pure copper polycrystals promotes early slip markings, labelled as slip markings of types II and III, localized close to grain or twin boundaries. In this work, we focus on whether ...
  • Very high cycle fatigue of copper: Evolution, morphology and locations of surface slip markings 
    Article dans une revue avec comité de lecture
    PHUNG, Ngoc-Lam; VALES, Fréderic; MURGHRABI, Haël; ccRANC, Nicolas; ccFAVIER, Véronique (Elsevier, 2014)
    The surfaces of commercially pure polycrystalline copper specimens subjected to interrupted 20 kHz fatigue tests in the very high cycle fatigue regime were investigated. The stress amplitude needed to form the early slip ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales