• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification and interpretation of material parameters of a shape memory alloy (SMA) model

Conférence invitée
Author
PIOTROWSKI, Boris
CHEMISKY, Yves
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ECHCHORFI, Rachid
BOURGEOIS, Nadine
PATOOR, Etienne

URI
http://hdl.handle.net/10985/10575
DOI
10.4028/www.scientific.net/MSF.738-739.276
Date
2013

Abstract

The thermomechanical behavior of Shape Memory Alloys (SMAs) is described by many micromechanical and phenomenological models. The first ones have material parameters whose physical meaning is based on the crystallography of the phase transformation related to the studied alloy. In contrast, phenomenological models often have material parameters whose physical meaning is not obvious and that makes them difficult to identify, some of which are based on mathematical considerations. In this paper, we propose to use the formulation of the phenomenological model of Chemisky et al., and to consider the particular case of a superelastic SMA. In this case, the constitutive equation should be easily expressed analytically through the strain tensor as a function of applied load direction and material parameters. The behavior is then characterized by a complete and proportional loading. This analytical model contains 7 material parameters, 1 related to the elasticity and 6 to the phase transformation. Based on several isothermal tensile tests at various temperatures, material parameters of this model are identified using the Levenberg-Marquardt algorithm and an analytical calculation of the sensitivity matrix. Their physical meaning and their influence on the thermomechanical behavior of the studied alloy are highlighted and discussed.

Files in this item

Name:
LEM3_MSF_2013_PIOTROWSKI.pdf
Size:
458.5Kb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Parameter identification of a thermodynamic model for superelastic shape memory alloys using analytical calculation of the sensitivity matrix 
    Article dans une revue avec comité de lecture
    ccMERAGHNI, Fodil; CHEMISKY, Yves; PIOTROWSKI, Boris; ECHCHORFI, Rachid; BOURGEOIS, Nadine; PATOOR, Etienne (Elsevier, 2014)
    This paper presents an identification procedure for the parameters of a thermodynamically based constitutive model for Shape memory Alloys (SMAs). The proposed approach is a gradient-based method and utilizes an analytical ...
  • Determination of the characteristic parameters of tension-compression asymmetry of Shape Memory Alloys using full-field measurements 
    Conférence invitée
    CHEMISKY, Yves; ECHCHORFI, Rachid; ccMERAGHNI, Fodil; BOURGEOIS, Nadine; PIOTROWSKI, Boris (Trans Tech publications, 2013)
    In this work, a method for the identification of the transformation surface of Shape Memory Alloys based on full field measurements is presented. An inverse method coupled with a gradient-based algorithm has been developed ...
  • Identification of Model Parameter for the Simulation of SMA Structures Using Full Field Measurements 
    Conférence invitée
    CHEMISKY, Yves; ccMERAGHNI, Fodil; BOURGEOIS, Nadine; CORNELL, Stephen; ECHCHORFI, Rachid; PATOOR, Etienne (Ibrahim Karaman, Raymundo Arróyave and Eyad Masad/ Wiley, 2015)
    With the design of new devices with complex geometry and to take advantage of their large recoverable strains, shape memory alloys components (SMA) are increasingly subjected to multiaxial loadings. The development process ...
  • Analysis of the deformation paths and thermomechanical parameter identification of a shape memory alloy using digital image correlation over heterogeneous tests 
    Article dans une revue avec comité de lecture
    CHEMISKY, Yves; ccMERAGHNI, Fodil; BOURGEOIS, Nadine; CORNELL, Stephen; ECHCHORFI, Rachid; PATOOR, Etienne (Elsevier, 2015)
    With the design of new devices with complex geometry and to take advantage of their large recoverable strains, shape memory alloys components (SMA) are increasingly subjected to multiaxial loadings. The development process ...
  • Cyclic loading effects on NITI alloys under biaxial conditions 
    Conférence invitée
    CHATZIATHANASIOU, Dimitris; BOURGEOIS, Nadine; CHEMISKY, Yves; ccMERAGHNI, Fodil (2016)
    In this work, the influence of the direction and the history of thermomechanical loading of NiTi shape memory alloys on the overall material behavior is experimentally investigated. In the first part, cyclic biaxial ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales