• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parameter identification of a thermodynamic model for superelastic shape memory alloys using analytical calculation of the sensitivity matrix

Article dans une revue avec comité de lecture
Author
ccMERAGHNI, Fodil
1104 Laboratoire de physique et mécanique des matériaux [LPMM]
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
CHEMISKY, Yves
PIOTROWSKI, Boris
ECHCHORFI, Rachid
BOURGEOIS, Nadine
PATOOR, Etienne

URI
http://hdl.handle.net/10985/9966
DOI
10.1016/j.euromechsol.2013.12.010
Date
2014
Journal
European Journal of Mechanics - A/Solids

Abstract

This paper presents an identification procedure for the parameters of a thermodynamically based constitutive model for Shape memory Alloys (SMAs). The proposed approach is a gradient-based method and utilizes an analytical computation of the sensitivity matrix. For several loading cases, including superelasticity, that are commonly utilized for the model parameters identification of such a constitutive model, a closed-form of the total infinitesimal strain is derived. The partial derivatives of this state variable are developed to find the components of the sensitivity matrix. A LevenbergeMarquardt algorithm is utilized to solve the inverse problem and find the best set of model parameters for specific SMA materials. Moreover, a pre-identification method, based on the second derivative of the total strain components is proposed. This provides a suitable initial set of model parameters, which increases the efficiency of the inverse method. The proposed approach is applied for the simultaneous identification of the non-linear constitutive parameters for two superelastic SMAs. The comparison between experimental and numerical curves obtained for different temperatures shows the capabilities of the developed identification approach. The robustness and the efficiency of the developed approach are then experimentally validated

Files in this item

Name:
LEM3_JEUROMECHSOL_2014_MERAGHNI.pdf
Size:
1.448Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Identification and interpretation of material parameters of a shape memory alloy (SMA) model 
    Conférence invitée
    PIOTROWSKI, Boris; CHEMISKY, Yves; ccMERAGHNI, Fodil; ECHCHORFI, Rachid; BOURGEOIS, Nadine; PATOOR, Etienne (Trans Tech Publications, 2013)
    The thermomechanical behavior of Shape Memory Alloys (SMAs) is described by many micromechanical and phenomenological models. The first ones have material parameters whose physical meaning is based on the crystallography ...
  • Determination of the characteristic parameters of tension-compression asymmetry of Shape Memory Alloys using full-field measurements 
    Conférence invitée
    CHEMISKY, Yves; ECHCHORFI, Rachid; ccMERAGHNI, Fodil; BOURGEOIS, Nadine; PIOTROWSKI, Boris (Trans Tech publications, 2013)
    In this work, a method for the identification of the transformation surface of Shape Memory Alloys based on full field measurements is presented. An inverse method coupled with a gradient-based algorithm has been developed ...
  • Identification of Model Parameter for the Simulation of SMA Structures Using Full Field Measurements 
    Conférence invitée
    CHEMISKY, Yves; ccMERAGHNI, Fodil; BOURGEOIS, Nadine; CORNELL, Stephen; ECHCHORFI, Rachid; PATOOR, Etienne (Ibrahim Karaman, Raymundo Arróyave and Eyad Masad/ Wiley, 2015)
    With the design of new devices with complex geometry and to take advantage of their large recoverable strains, shape memory alloys components (SMA) are increasingly subjected to multiaxial loadings. The development process ...
  • Analysis of the deformation paths and thermomechanical parameter identification of a shape memory alloy using digital image correlation over heterogeneous tests 
    Article dans une revue avec comité de lecture
    CHEMISKY, Yves; ccMERAGHNI, Fodil; BOURGEOIS, Nadine; CORNELL, Stephen; ECHCHORFI, Rachid; PATOOR, Etienne (Elsevier, 2015)
    With the design of new devices with complex geometry and to take advantage of their large recoverable strains, shape memory alloys components (SMA) are increasingly subjected to multiaxial loadings. The development process ...
  • Cyclic loading effects on NITI alloys under biaxial conditions 
    Conférence invitée
    CHATZIATHANASIOU, Dimitris; BOURGEOIS, Nadine; CHEMISKY, Yves; ccMERAGHNI, Fodil (2016)
    In this work, the influence of the direction and the history of thermomechanical loading of NiTi shape memory alloys on the overall material behavior is experimentally investigated. In the first part, cyclic biaxial ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales