• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
  • Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inviscid approach for upwind sails aerodynamics. How far can we go?

Article dans une revue avec comité de lecture
Author
AUBIN, Nicolas
AUGIER, Benoit
ccBOT, Patrick
13094 Institut de Recherche de l'Ecole Navale [IRENAV]
ccHAUVILLE, Frederic
FLOCH, Ronan
507181 Incidence Sails [Incidence-sails Brest]

URI
http://hdl.handle.net/10985/11017
Date
2016
Journal
Journal of Wind Engineering and Industrial Aerodynamics

Abstract

This work presents a full-scale experimental study of a yacht rig and sails in real upwind sailing conditions and a comparison with Fluid Structure Interaction (FSI) simulations with the ARAVANTI model (Finite Element Method for the structure and Vortex Lattice Method for the fluid). An specific on-board instrumentation system simultaneously measures loads in the rig and sails, sailing data (wind, boat attitude and speed) and the shape of sails in real navigation conditions (flying shape). Flying shape parameters are extracted using the camera-based VSPARS system to characterize the effects of sail trims and to be compared with the results of the simulation. The potential flow solver gives fast and accurate predictions of both the flying shape and the loads in the rig in most conditions. The inviscid approach, commonly used in the early stage of design, must be checked, as in particular cases where the sails are heavily loaded, flow separation is significant and results from a potential flow solver are inaccurate. A new version of the model including the heel angle as an additional degree of freedom in the structural solver enables to detect when the inviscid flow approach overestimates the aerodynamic load. This upgrade improves the utility and reliability of the inviscid flow approach which remains relevant at the early stages of design as it is much more cost-effective than RANS models.

Files in this item

Name:
IRENAV_JWEIA_BOT_2016.pdf
Size:
1.797Mb
Format:
PDF
View/Open

Collections

  • Institut de Recherche de l’École navale (IRENAV)

Related items

Showing items related by title, author, creator and subject.

  • Wind tunnel investigation of dynamic trimming on upwind sail aerodynamics 
    Communication avec acte
    AUBIN, Nicolas; AUGIER, Benoit; SACHER, Matthieu; FLAY, Richard G.J.; ccBOT, Patrick; ccHAUVILLE, Frederic (2016)
    An experiment was performed in the Yacht Research Unit’s Twisted Flow Wind Tunnel (University of Auckland) to test the effect of dynamic trimming on three IMOCA 60 inspired mainsail models in an upwind (AWA = 60 ) unheeled ...
  • How to be the best at sail pumping? 
    Communication avec acte
    AUBIN, Nicolas; DHOME, Ulisse; AUGIER, Benoit; ccBOT, Patrick; ccHAUVILLE, Frederic (2016)
    Pumping or flicking1 is often used by sailors to get extra propulsion while sailing (subject to restrictions by the racing rules2). Common unsteady sailing situations, due to crew action (e.g. manoeuver like gybing3) or ...
  • Wind tunnel investigation of dynamic trimming on upwind sail aerodynamics 
    Article dans une revue avec comité de lecture
    AUBIN, Nicolas; AUGIER, Benoit; ccBOT, Patrick; ccHAUVILLE, Frederic; SACHER, Matthieu; FLAY, Richard G.J. (The Society of Naval Architects and Marine Engineers, 2017)
    An experiment was performed in the Yacht Research Unit’s Twisted Flow Wind Tunnel (University of Auckland) to test the effect of dynamic trimming on three IMOCA 60 inspired mainsail models in an upwind ( AW = 60°) unheeled ...
  • Numerical study of a Flexible Sail Plan submitted to pitching : Hysteresis phenomenon and effect of rig Adjustments 
    Article dans une revue avec comité de lecture
    AUGIER, Benoit; ccHAUVILLE, Frederic; ccBOT, Patrick; AUBIN, Nicolas; DURAND, Mathieu (Elsevier, 2014)
    A numerical investigation of the dynamic Fluid Structure Interaction (FSI) of a yacht sail plan submitted to harmonic pitching is presented to analyse the system's dynamic behaviour and the effects of motion simplifications ...
  • Performance enhancement of downwind sails due to leading edge flapping: A wind tunnel investigation 
    Article dans une revue avec comité de lecture
    AUBIN, Nicolas; AUGIER, Benoit; DEPARDAY, Julien; SACHER, Matthieu; ccBOT, Patrick (Elsevier, 2018)
    This work presents a wind tunnel experimental study on the effect of the leading edge flapping on the aerodynamic performance of a spinnaker. Four J80-class spinnaker models, combining two different assembling structures ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales