Error Estimation for Model Order Reduction of Finite Element Parametric Problems
Article dans une revue avec comité de lecture
Date
2016Journal
IEEE Transactions on MagneticsAbstract
To solve a parametric model in computational electromagnetics, the Finite Element method is often used. To reduce the computational time and the memory requirement, the Finite Element method can be combined with Model Order Reduction Technic like the Proper Orthogonal Decomposition (POD) and the (Discrete) Empirical Interpolation ((D)EI) Methods. These three numerical methods introduce errors of discretisation, reduction and interpolation respectively. The solution of the parametric model will be efficient if the three errors are of the same order and so they need to be evaluated and compared. In this paper, we propose an aposteriori error estimator based on the verification of the constitutive law which estimates the three different errors. An example of application in magnetostatics with 11 parameters is treated where it is shown how the error estimator can be used to control and to improve the accuracy of the solution of the reduced model.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureHENNERON, Thomas; PIERQUIN, Antoine; BRISSET, Stéphane; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2016)To study a multirate system, each subsystem can be solved by a dedicated sofware with respect to the physical problem and the time constant. Then, the problem is the coupling of the solutions of the subsystems. The Waveform ...
-
Article dans une revue avec comité de lecturePIERQUIN, Antoine; HENNERON, Thomas; BRISSET, Stephane; CLENET, Stephane (Wydawnictwo Czasopism i Ksia̜żek Technicznych Sigma, 2015)The modelling of a multirate system -composed of components with heterogeneous time constants- can be done using fixed-point method. This method allows a time-discretization of each subsystem with respect to its own time ...
-
Model-Order Reduction of Magnetoquasi-Static Problems Based on POD and Arnoldi-Based Krylov Methods Communication avec acteThe proper orthogonal decomposition method and Arnoldi-based Krylov projection method are investigated in order to reduce a finite-element model of a quasi-static problem. Both methods are compared on an academic example ...
-
Article dans une revue avec comité de lecturePIERQUIN, Antoine; BRISSET, Stéphane; HENNERON, Thomas; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2014)We present an optimization problem that requires to model a multirate system, composed of subsystems with different time constants. We use waveform relaxation method in order to simulate such a system. But computation time ...
-
Article dans une revue avec comité de lectureMONTIER, Laurent; HENNERON, Thomas; GOURSAUD, Benjamin; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2017)The Proper Generalized Decomposition (PGD) is a model order reduction method which allows to reduce the computational time of a numerical problem by seeking for a separated representation of the solution. The PGD has been ...