• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • View Item
  • Home
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Error Estimation for Model Order Reduction of Finite Element Parametric Problems

Article dans une revue avec comité de lecture
Author
HENNERON, Thomas
ccCLENET, Stephane
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]

URI
http://hdl.handle.net/10985/11034
DOI
10.1109/TMAG.2015.2489762
Date
2016
Journal
IEEE Transactions on Magnetics

Abstract

To solve a parametric model in computational electromagnetics, the Finite Element method is often used. To reduce the computational time and the memory requirement, the Finite Element method can be combined with Model Order Reduction Technic like the Proper Orthogonal Decomposition (POD) and the (Discrete) Empirical Interpolation ((D)EI) Methods. These three numerical methods introduce errors of discretisation, reduction and interpolation respectively. The solution of the parametric model will be efficient if the three errors are of the same order and so they need to be evaluated and compared. In this paper, we propose an aposteriori error estimator based on the verification of the constitutive law which estimates the three different errors. An example of application in magnetostatics with 11 parameters is treated where it is shown how the error estimator can be used to control and to improve the accuracy of the solution of the reduced model.

Files in this item

Name:
L2EP_TMAG_2016_CLENET.pdf
Size:
468.3Kb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille

Related items

Showing items related by title, author, creator and subject.

  • Optimisation process to solve multirate system 
    Article dans une revue avec comité de lecture
    PIERQUIN, Antoine; HENNERON, Thomas; BRISSET, Stephane; ccCLENET, Stephane (Wydawnictwo Czasopism i Ksia̜żek Technicznych Sigma, 2015)
    The modelling of a multirate system -composed of components with heterogeneous time constants- can be done using fixed-point method. This method allows a time-discretization of each subsystem with respect to its own time ...
  • Model-Order Reduction of Magnetoquasi-Static Problems Based on POD and Arnoldi-Based Krylov Methods 
    Communication avec acte
    PIERQUIN, Antoine; HENNERON, Thomas; BRISSET, Stéphane; ccCLENET, Stephane (IEEE, 2015)
    The proper orthogonal decomposition method and Arnoldi-based Krylov projection method are investigated in order to reduce a finite-element model of a quasi-static problem. Both methods are compared on an academic example ...
  • Multirate coupling of controlled rectifier and non-linear finite element model based on Waveform Relaxation Method 
    Article dans une revue avec comité de lecture
    HENNERON, Thomas; PIERQUIN, Antoine; BRISSET, Stéphane; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2016)
    To study a multirate system, each subsystem can be solved by a dedicated sofware with respect to the physical problem and the time constant. Then, the problem is the coupling of the solutions of the subsystems. The Waveform ...
  • Benefits of Waveform Relaxation Method and Output Space Mapping for the Optimization of Multirate Systems 
    Article dans une revue avec comité de lecture
    PIERQUIN, Antoine; BRISSET, Stéphane; HENNERON, Thomas; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2014)
    We present an optimization problem that requires to model a multirate system, composed of subsystems with different time constants. We use waveform relaxation method in order to simulate such a system. But computation time ...
  • Proper Generalized Decomposition Applied on a Rotating Electrical Machine 
    Article dans une revue avec comité de lecture
    MONTIER, Laurent; HENNERON, Thomas; GOURSAUD, Benjamin; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2018)
    The Proper Generalized Decomposition (PGD) is a model order reduction method which allows to reduce the computational time of a numerical problem by seeking for a separated representation of the solution. The PGD has been ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales