• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • View Item
  • Home
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model-Order Reduction of Magnetoquasi-Static Problems Based on POD and Arnoldi-Based Krylov Methods

Communication avec acte
Author
PIERQUIN, Antoine
HENNERON, Thomas
BRISSET, Stéphane
ccCLENET, Stephane
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]

URI
http://hdl.handle.net/10985/9558
DOI
10.1109/TMAG.2014.2358374
Date
2015

Abstract

The proper orthogonal decomposition method and Arnoldi-based Krylov projection method are investigated in order to reduce a finite-element model of a quasi-static problem. Both methods are compared on an academic example in terms of computation time and precision.

Files in this item

Name:
L2EP_CEFC-2_2015_CLENET.pdf
Size:
2.550Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille

Related items

Showing items related by title, author, creator and subject.

  • Multirate coupling of controlled rectifier and non-linear finite element model based on Waveform Relaxation Method 
    Article dans une revue avec comité de lecture
    HENNERON, Thomas; PIERQUIN, Antoine; BRISSET, Stéphane; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2016)
    To study a multirate system, each subsystem can be solved by a dedicated sofware with respect to the physical problem and the time constant. Then, the problem is the coupling of the solutions of the subsystems. The Waveform ...
  • Benefits of Waveform Relaxation Method and Output Space Mapping for the Optimization of Multirate Systems 
    Article dans une revue avec comité de lecture
    PIERQUIN, Antoine; BRISSET, Stéphane; HENNERON, Thomas; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2014)
    We present an optimization problem that requires to model a multirate system, composed of subsystems with different time constants. We use waveform relaxation method in order to simulate such a system. But computation time ...
  • Optimisation process to solve multirate system 
    Article dans une revue avec comité de lecture
    PIERQUIN, Antoine; HENNERON, Thomas; BRISSET, Stephane; ccCLENET, Stephane (Wydawnictwo Czasopism i Ksia̜żek Technicznych Sigma, 2015)
    The modelling of a multirate system -composed of components with heterogeneous time constants- can be done using fixed-point method. This method allows a time-discretization of each subsystem with respect to its own time ...
  • Data-Driven Model Order Reduction for Magnetostatic Problem Coupled with Circuit Equations 
    Article dans une revue avec comité de lecture
    PIERQUIN, Antoine; HENNERON, Thomas; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2017)
    Among the model order reduction techniques, the Proper Orthogonal Decomposition (POD) has shown its efficiency to solve magnetostatic and magneto-quasistatic problems in the time domain. However, the POD is intrusive in ...
  • Comparison of DEIM and BPIM to Speed up a POD-based Nonlinear Magnetostatic Model 
    Article dans une revue avec comité de lecture
    HENNERON, Thomas; MONTIER, Laurent; PIERQUIN, Antoine; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2017)
    Proper Orthogonal Decomposition (POD) has been successfully used to reduce the size of linear Finite Element (FE) problems, and thus the computational time associated with. When considering a nonlinear behavior law of the ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales