• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • View Item
  • Home
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model-Order Reduction of Magnetoquasi-Static Problems Based on POD and Arnoldi-Based Krylov Methods

Communication avec acte
Author
PIERQUIN, Antoine
HENNERON, Thomas
BRISSET, Stéphane
ccCLENET, Stephane
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]

URI
http://hdl.handle.net/10985/9558
DOI
10.1109/TMAG.2014.2358374
Date
2015

Abstract

The proper orthogonal decomposition method and Arnoldi-based Krylov projection method are investigated in order to reduce a finite-element model of a quasi-static problem. Both methods are compared on an academic example in terms of computation time and precision.

Files in this item

Name:
L2EP_CEFC-2_2015_CLENET.pdf
Size:
2.550Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille

Related items

Showing items related by title, author, creator and subject.

  • Optimisation process to solve multirate system 
    Article dans une revue avec comité de lecture
    PIERQUIN, Antoine; HENNERON, Thomas; BRISSET, Stephane; ccCLENET, Stephane (Wydawnictwo Czasopism i Ksia̜żek Technicznych Sigma, 2015)
    The modelling of a multirate system -composed of components with heterogeneous time constants- can be done using fixed-point method. This method allows a time-discretization of each subsystem with respect to its own time ...
  • Multirate coupling of controlled rectifier and non-linear finite element model based on Waveform Relaxation Method 
    Article dans une revue avec comité de lecture
    HENNERON, Thomas; PIERQUIN, Antoine; BRISSET, Stéphane; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2016)
    To study a multirate system, each subsystem can be solved by a dedicated sofware with respect to the physical problem and the time constant. Then, the problem is the coupling of the solutions of the subsystems. The Waveform ...
  • Benefits of Waveform Relaxation Method and Output Space Mapping for the Optimization of Multirate Systems 
    Article dans une revue avec comité de lecture
    PIERQUIN, Antoine; BRISSET, Stéphane; HENNERON, Thomas; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2014)
    We present an optimization problem that requires to model a multirate system, composed of subsystems with different time constants. We use waveform relaxation method in order to simulate such a system. But computation time ...
  • Data-Driven Model Order Reduction for Magnetostatic Problem Coupled with Circuit Equations 
    Article dans une revue avec comité de lecture
    PIERQUIN, Antoine; HENNERON, Thomas; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2018)
    Among the model order reduction techniques, the Proper Orthogonal Decomposition (POD) has shown its efficiency to solve magnetostatic and magneto-quasistatic problems in the time domain. However, the POD is intrusive in ...
  • Mesh Deformation Based on Radial Basis Function Interpolation Applied to Low-Frequency Electromagnetic Problem 
    Article dans une revue avec comité de lecture
    HENNERON, Thomas; PIERQUIN, Antoine; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2019)
    In order to take into account a modification of the geometry during an optimization process or due to a physical phenomenon, a deformation of the elements of the spatial discretization is preferable to conserve a conformal ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales