• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Micromechanical modeling of damage and load transfer in particulate composites with partially debonded interface

Article dans une revue avec comité de lecture
Author
DESPRINGRE, Nicolas
CHEMISKY, Yves
BONNAY, Kevin
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/11144
DOI
10.1016/j.compstruct.2016.06.075
Date
2016
Journal
Composite Structures

Abstract

A new micromechanical damage model accounting for progressive interface debonding is developed for composite materials. It consists of an original evolution law of the damage at the interface and an appropriate load transfer law at the matrix-fiber interface integrated into a generalized incremental Mori–Tanaka homogenization scheme. The interface damage evolution is driven by the interfacial stress state while the load transfer is obtained from a new model inspired by the shear lag model. Specifically, such damage evolution is supported by experimental microscopic observations for short glass fiber reinforced polyamide-66. The proposed model is validated based on numerical reference solutions provided from finite element analyses of a representative unit cell of a composite, where imperfect interfaces are represented using cohesive elements. A further comparison with experimental data proves that the proposed model is an alternative to micromechanical models involving weak interfaces in the case of spherical reinforcements. It is shown that the proposed model is able to accurately reproduce the non-linear effective response of composite materials for a broad range of reinforcement shapes, including spherical particles and matrix mechanical properties.

Files in this item

Name:
LEM3_COMSTR_2016_MERAGHNI.pdf
Size:
2.533Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Interfacial damage and load transfermodeling in short fiber reinforced composites 
    Conférence invitée
    BONNAY, Kevin; DESPRINGRE, Nicolas; CHEMISKY, Yves; ccMERAGHNI, Fodil (2016)
    Due to the compromise between their thermomechanical properties and low density, Short Fiber Reinforced Polyamides (SFRP) present a good alternative to metals for automotive structural components. The microstructure of ...
  • Endommagement en fatigue du PA66 renforcé par des fibres de verre courtes : modélisation micromécanique et stratégie d'identification multi - échelles 
    Communication avec acte
    DESPRINGRE, Nicolas; CHEMISKY, Yves; ccFITOUSSI, Joseph; ccMERAGHNI, Fodil (2015)
    Cet article présente un modèle micromécanique visco-endommageable pour les composites à matrice thermoplastique renforcée par des fibres de verre courtes et soumis à un chargement en fatigue. L'approche multi-échelles ...
  • Fatigue damage in short glass fiber reinforced PA66: Micromechanical modeling and multiscale identification approach 
    Communication avec acte
    DESPRINGRE, Nicolas; CHEMISKY, Yves; ccMERAGHNI, Fodil; ccFITOUSSI, Joseph; ROBERT, Gilles (2015)
    The paper presents a new micromechanical high cycle fatigue visco-damage model for short glass fiber reinforced thermoplastic composites, namely: PA66/GF30. This material, extensively used for automotive applications, has ...
  • Micromechanical Fatigue Visco-Damage Model for Short Glass Fiber Reinforced Polyamide-66 
    Communication avec acte
    DESPRINGRE, Nicolas; CHEMISKY, Yves; ROBERT, Gilles; ccMERAGHNI, Fodil (Ibrahim Karaman, Raymundo Arróyave and Eyad Masad / Wiley, 2015)
    This work presents a micromechanical fatigue damage model developed for short glass fiber reinforced PA66. It has been developed to predict the high cycle fatigue behavior of PA66/GF30. The model is based on an extended ...
  • Multi-scale viscoelastic damage model of short glass fiber reinforced thermoplastics under fatigue loading 
    Communication avec acte
    DESPRINGRE, Nicolas; CHEMISKY, Yves; ARIF, Muhamad Fatikul; ROBERT, Gilles; ccMERAGHNI, Fodil (2014)
    This work presents a new micromechanical fatigue damage model for reinforced thermoplastic composites. The study aims at modeling high cycle fatigue damage of a short glass fiber reinforced polyamide-66. The developed ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales