Interfacial damage and load transfermodeling in short fiber reinforced composites
Conférence invitée
Date
2016Abstract
Due to the compromise between their thermomechanical properties and low density, Short Fiber Reinforced Polyamides (SFRP) present a good alternative to metals for automotive structural components. The microstructure of such materials, combined with the matrix sensitivity to environmental conditions, has a strong impact on their overall behavior and the related damage. A new multi-scale modelling strategy is proposed, based on the experimental observations of interfacial damage evolution for PA66-GF30 composites. Three main key-points have been integrated to this approach: an original damage evolution law at the interface, an appropriate load transfer law at the matrix-fiber interface, and a homogenization strategy founded on the generalized Mori-Tanaka scheme. The damage evolution law is driven by a local probabilistic criterion based on the interfacial stress field estimation. This type of evolution depends on the maximal local damage rate at the fiber/matrix interface, determined from a numerical evaluation at several points of the interface surrounding the inclusion. It is then coupled with a load transfer law formulated according to a modified shear lag model (SLM). The developed model is assessed with a finite element (FE) computation integrating cohesive elements at the matrix-fiber interface. The FE unit cell consists in a periodic media (hexagonal array) with periodic boundary conditions. The fiber-matrix interface integrates cohesive elements, with a cohesive law driven by a Paulino-Park-Roesler (PPR) potential-based formulation. The latter has been proven to be suitable for the 3D modeling of interface in reinforced composites. The proposed approach is able to accurately capture the non-linear behavior of short fiber reinforced polyamide composites accounting for interfacial damage.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureA new micromechanical damage model accounting for progressive interface debonding is developed for composite materials. It consists of an original evolution law of the damage at the interface and an appropriate load transfer ...
-
Communication avec acteThis work presents a new micromechanical fatigue damage model for reinforced thermoplastic composites. The study aims at modeling high cycle fatigue damage of a short glass fiber reinforced polyamide-66. The developed ...
-
Article dans une revue avec comité de lectureARIF, Muhamad Fatikul; CHEMISKY, Yves; DESPRINGRE, Nicolas; ROBERT, Gilles; MERAGHNI, Fodil (Elsevier, 2014)Damage mechanisms of injection molded polyamide-66/short glass fiber 30 wt% composite (PA66/GF30) were analyzed using in situ SEM mechanical tests on specimens conditioned under three relative humidity contents (RH = 0%, ...
-
Communication avec acteInjection molded polyamide composite reinforced with short glass fibers has been widely used in automotive industry due to its high strength to weight ratio and the ability of injection process to produce complex parts. A ...
-
Communication avec acteThe paper presents a new micromechanical high cycle fatigue visco-damage model for short glass fiber reinforced thermoplastic composites, namely: PA66/GF30. This material, extensively used for automotive applications, has ...