Numerical analysis of constitutive coefficients effects on FE simulation of the 2D orthogonal cutting process: application to the Ti6Al4V
Article dans une revue avec comité de lecture
Date
2016Journal
International Journal of Advanced Manufacturing TechnologyAbstract
In this paper, a deep study of constitutive parameters definition effect is done in order to guarantee sufficient reliability of the finite element machining modeling. The case of a particular biphasic titanium alloy Ti6Al4V known by its low machinability is investigated. The Johnson-Cook (JC) elasto-thermo-visco-plastic-damage model combined with the energy-based ductile fracture criteria is used. Segmentation frequency, chip curvature radius, shear band spacing, chip serration sensitivity and intensity, accumulated plastic strain in the formed chip segments, and cutting forces levels are determined where their dependency to every constitutive coefficient is examined and highlighted. It is demonstrated from the separate variation of every plastic and damage parameters that an interesting finite element modeling (FEM) relevance is reached with the adjustment of JC strain hardening coefficients term, thermal softening parameter, exponent fracture factor, and damage evolution energy. Moderate and high cutting speeds are applied to the cutting tool in the aim to test their impact on shear localization, chip segmentation, and numerical forces levels as well as to approve previous highlighted findings related to constitutive parameters definition. In general, this study focuses on a prominent decrease in identification process cost with the previous knowledge of the most affecting constitutive coefficients while keeping an interesting agreement between numerical and experimental results.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Ouvrage scientifiqueYAICH, Mariem; AYED, Yessine; BOUAZIZ, Zoubeir; GERMAIN, Guénaël (Springer International Publishing, 2020)A 3D finite element modeling of the orthogonal turning process was curried out in the current study. It aims to carefully investigate the mechanisms controlling the chip segmentation and the crack propagation direction in ...
-
Article dans une revue avec comité de lectureThe numerical analysis, based on the finite element modeling (FEM), presents nowadays an efficient computational tool. It allows a better understanding of several thermo-mechanical phenomena involved during the machining ...
-
Numerical analysis of the Ti6Al4V behavior based on the definition of a new phenomenological model Article dans une revue avec comité de lectureYAICH, Mariem; AYED, Yessine; GERMAIN, Guénaël; BOUAZIZ, Zoubeir (Springer Science and Business Media LLC, 2021)The finite element modeling is significantly dependent on the accurate prediction of the material behavior. In order to increase the accuracy of numerical simulations, a new phenomenological model is proposed in this study. ...
-
Article dans une revue avec comité de lectureTitanium alloy is well known for its difficulty to machine, owing to the important “tool wear” phenomenon. Machining assistance is an interesting solution to lengthen the tool lifetime. In this study, we focused on the ...
-
Communication avec acteTRABELSI, Sabrine; BOUAZIZ, Zoubeir; MOREL, Anne; GERMAIN, Guénaël (Springer International Publishing, 2015)Understanding of local mechanisms chip forming during machining by removal of material is difficult, to this end; a cutting finite element modelling is required. This study aims initially to model orthogonal cutting of ...