Torsional Vibrations of Fluid-Filled Multilayered Transversely Isotropic Finite Circular Cylinder
Article dans une revue avec comité de lecture
Date
2016Journal
International Journal of Applied MechanicsRésumé
An analytical and numerical study for the torsional vibrations of viscous fluid-filled three-layer transversely isotropic cylinder is presented in this paper. The equations of motion of solid and fluid are respectively formulated using the constitutive equations of a transversely isotropic cylinder and the constitutive equations of a viscous fluid. The analytical solution of the frequency equation is obtained using the boundary conditions at the free surface of the solid layer and the boundary conditions at the fluid–solid interface. The frequency equation is deduced and analytically solved using the symbolic Software Mathematica. The finite element method using Comsol Multiphysics Software results are compared with present method for validation and an acceptable match between them were obtained. It is shown that the results from the proposed method are in good agreement with numerical solutions. The influence of fluid dynamic viscosity is thoroughly analyzed and the effect of the isotropic properties on the natural frequencies is also investigated.
Fichier(s) constituant cette publication
- Nom:
- LAMPA_IJAM_2016_ABASSI.pdf
- Taille:
- 1.408Mo
- Format:
- Description:
- Article principal
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureThe ascending branch of the aorta is one of the most stressed organ of the arterial system. We aim to design a biomechanical model for analysing the aorta dynamics under a shock. The model includes the aorta layers and the ...
-
Article dans une revue avec comité de lectureThis paper studies the influence of boundary conditions on a fluid medium of finite depth.We determine the frequencies and the modal shapes of the fluid.The fluid is assumed to be incompressible and viscous. A potential ...
-
Article dans une revue avec comité de lectureA potential flow is presented in this paper for the analysis of the fluid-structure interaction systems including, but not limited to, the idealized human head. The model considers a cerebro-spinal fluid (CSF) medium ...
-
Article dans une revue avec comité de lectureThe vibrational characteristics of a microbeam are well known to strongly depend on the fluid in which the beam is immersed. In this paper, we present a detailed theoretical study of the modal analysis of microbeams partially ...
-
Transverse vibration analysis of Euler-Bernoulli beam carrying point masse submerged in fluid media Article dans une revue avec comité de lectureIn the present paper, an analytical method is developed to investigate the effects of added mass on natural frequencies and mode shapes of Euler-Bernoulli beams carrying concentrated masse at arbitrary position submerged ...