• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Torque ripple minimization in non-sinusoidal synchronous reluctance motors based on artificial neural networks

Article dans une revue avec comité de lecture
Auteur
TRUONG, Phuoc Hoa
25826 Modélisation, Intelligence, Processus et Système [MIPS]
FLIELLER, Damien
407451 Groupe de Recherche en Electrotechnique et Electronique de Nancy [GREEN]
MERCKLE, Jean
25826 Modélisation, Intelligence, Processus et Système [MIPS]
STURTZER, Guy
50264 Laboratoire de Génie de la Conception [LGeco]
NGUYEN, Ngac Ky
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]

URI
http://hdl.handle.net/10985/11199
Date
2016
Journal
Torque ripple minimization in non-sinusoidal synchronous reluctance motors based on artificial neural networks

Résumé

This paper proposes a new method based on Artificial Neural Networks for reducing the torque ripple in a non-sinusoidal Synchronous Reluctance Motor. The Lagrange optimization method is used to solve the problem of calculating optimal currents in the d-q frame. A neural control scheme is then proposed as an adaptive solution to derive the optimal stator currents giving a constant electromagnetic torque and minimizing the ohmic losses. Thanks to the online learning capacity of neural networks, the optimal currents can be obtained online in real time. With this neural control, each machine’s parameters estimation errors and current controller errors can be compensated. Simulation and experimental results are presented which confirm the validity of the proposed method.

Fichier(s) constituant cette publication

Nom:
L2EP_ELSEVIER_2016_NGUYEN
Taille:
852.1Ko
Format:
PDF
Description:
Article Principal
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • A Self-Learning Solution for Torque Ripple Reduction for Non-Sinusoidal Permanent Magnet Motor Drives Based on Artificial Neural Networks 
    Article dans une revue avec comité de lecture
    FLIELLER, Damien; WIRA, Patrick; STURTZER, Guy; OULD ABDESLAM, Djaffar; MERCKLE, Jean; NGUYEN, Ngac Ky (Institute of Electrical and Electronics Engineers, 2013)
    This paper presents an original method, based on artificial neural networks, to reduce the torque ripple in a permanent-magnet non-sinusoidal synchronous motor. Solutions for calculating optimal currents are deduced from ...
  • Optimal Efficiency Control of Synchronous Reluctance Motors-based ANN Considering Cross Magnetic Saturation and Iron Loss 
    Communication avec acte
    TRUONG, Phuoc Hoa; FLIELLER, Damien; MERCKLE, Jean; NGUYEN, Ngac Ky (IEEE, 2015)
    This paper presents a new idea by using the Artificial Neural Networks (ANNs) for estimating the parameters of the machine which achieving the maximum efficiency of the Synchronous Reluctance Motor (SynRM). This model take ...
  • Analytical Optimal Currents for Multiphase PMSMs Under Fault Conditions and Saturation 
    Communication avec acte
    FLIELLER, Damien; ccSEMAIL, Eric; ccKESTELYN, Xavier; NGUYEN, Ngac Ky (IEEE, 2014)
    An original analytical expression is presented in this paper to obtain optimal currents minimizing the copper losses of a multi-phase Permanent Magnet Synchronous Motor (PMSM) under fault conditions. Based on the existing ...
  • Variable speed Control under Voltage and Current Limits of a 5-phase PMSM drive in Healthy and Open-Circuited Modes 
    Article dans une revue avec comité de lecture
    FALL, Ousmane; CHARPENTIER, Jean-Frederic; LETELLIER, Paul; ccSEMAIL, Eric; ccKESTELYN, Xavier; NGUYEN, Ngac Ky (Elsevier, 2016)
    This paper proposes a novel variable speed control strategy of a particular 5-phase Permanent Magnet Synchronous Generator (PMSG) in healthy and faulty modes by taking into account the constraints on voltages and currents. ...
  • Performances comparison of different concentrated-winding configurations for 5-phase PMSG in normal and faulty modes in flux weakening operation for fixed pitch tidal turbines 
    Communication avec acte
    FALL, Ousmane; CHARPENTIER, Jean-Frederic; NGUYEN, Ngac Ky; LETELLIER, Paul (IEEE, 2016)
    This paper aims to evaluate some configurations of windings for low speed high power 5-phase permanent magnet synchronous generators (PMSG) associated to fixed pitch tidal turbines. Several Fractional-Slot Concentrated- ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales