• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combined effect of damage and plastic anisotropy on the ductility limit of thin metal sheets

Article dans une revue avec comité de lecture
Author
MSOLLI, Sabeur
ccBEN BETTAIEB, Mohamed
ccABED-MERAIM, Farid 
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/11234
DOI
10.1016/j.prostr.2016.06.446
Date
2016
Journal
Procedia Structural Integrity

Abstract

It is well known that both damage and plastic anisotropy strongly affect the ductility limit of thin metal sheets. Due to the manufacturing processes, initial defects, such as inclusions and voids, are commonly present in the produced sheet metals. Plastic anisotropy is a direct outcome of the rolling process, where the resulting metal sheets exhibit preferred crystallographic orientations or strong texture. In the present study, the combined effect of plastic anisotropy and damage on localized necking is numerically investigated and analyzed. To this aim, an improved version of the Gurson-Tvergaard-Needleman (GTN) constitutive framework is used to model the mechanical behavior of the studied sheet. This version, which is an extension of the original GTN model, incorporates Hill’s anisotropic yield function to take into account the plastic anisotropy of the matrix material. Particular attention is devoted to the derivation of the analytical tangent modulus associated with this constitutive model. This extended GTN model is successfully coupled with bifurcation theory to predict sheet metal ductility limits, which are represented in terms of forming limit diagrams (FLDs). The effect of some material parameters (e.g.,anisotropy parameters of the metallic matrix) on the shape and the location of the predicted FLDs is then investigated and discussed through numerical simulations.

Files in this item

Name:
LEM3_PROSTR_2016_MSOLLI.pdf
Size:
649.2Kb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Modeling of void coalescence initiation and its impact on the prediction of material failure 
    Communication avec acte
    MSOLLI, Sabeur; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Francisco Chinesta, Elias Cueto and Emmanuelle Abisset-Chavanne (AIP), 2016)
    In the present paper, Thomason’s criterion is coupled with the well-known Gurson–Tvergaard–Needleman (GTN) damage model and used for the determination of the critical void volume fraction fc , which marks the initiation ...
  • Combined effect of damage and plastic anisotropy on the ductility limit of thin metal sheets 
    Communication avec acte
    MSOLLI, Sabeur; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Elsevier, 2016)
    It is well known that both damage and plastic anisotropy strongly affect the ductility limit of thin metal sheets. Due to the manufacturing processes, initial defects, such as inclusions and voids, are commonly present in ...
  • Prediction of the Ductility Limit of Magnesium AZ31B Alloy 
    Chapitre d'ouvrage scientifique
    JEDIDI, Mohamed Yassine; ccBEN BETTAIEB, Mohamed; BOUGUECHA, Anas; ccABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; HADDAR, Mohamed (Springer International Publishing, 2019)
    In many engineering applications (automotive, computer and mobile device industries, etc.), magnesium alloys have been widely used owing to their interesting physical and mechanical parameters. However, magnesium alloys ...
  • An anisotropic model with linear perturbation technique to predict HCP sheet metal ductility limit 
    Communication avec acte
    JEDIDI, Mohamed Yassine; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; BOUGUECHA, Anas; HADDAR, Mohamed (2021)
    In this paper, hexagonal closed packed (HCP) sheet metal ductility for a viscoplastic material is analyzed by using a linear perturbation technique. It can be used for the analysis of localized necking. This technique is ...
  • Prediction of necking in HCP sheet metals using a two-surface plasticity model 
    Article dans une revue avec comité de lecture
    JEDIDI, Mohamed Yassine; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; BOUGUECHA, Anas; HADDAR, Mohamed (Elsevier, 2020)
    In the present contribution, a two-surface plasticity model is coupled with several diffuse and localized necking criteria to predict the ductility limits of hexagonal closed packed sheet metals. The plastic strain is ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales