• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Peaks Over Threshold–based detector design for structural health monitoring: Application to aerospace structures

Article dans une revue avec comité de lecture
Author
HMAD, Ouadie
KADRI, Farid
26637 Laboratoire Modélisation et Sûreté des Systèmes [LM2S]
ccMECHBAL, Nazih
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccRÉBILLAT, Marc

URI
http://hdl.handle.net/10985/11775
DOI
10.1177/1475921716685039
Date
2018
Journal
Structural Health Monitoring

Abstract

Structural health monitoring offers new approaches to interrogate the integrity of complex structures. The structural health monitoring process classically relies on four sequential steps: damage detection, localization, classification, and quantification. The most critical step of such process is the damage detection step since it is the first one and because performances of the following steps depend on it. A common method to design such a detector consists of relying on a statistical characterization of the damage indexes available in the healthy behavior of the structure. On the basis of this information, a decision threshold can then be computed in order to achieve a desired probability of false alarm. To determine the decision threshold corresponding to such desired probability of false alarm, the approach considered here is based on a model of the tail of the damage indexes distribution built using the Peaks Over Threshold method extracted from the extreme value theory. This approach of tail distribution estimation is interesting since it is not necessary to know the whole distribution of the damage indexes to develop a detector, but only its tail. This methodology is applied here in the context of a composite aircraft nacelle (where desired probability of false alarm is typically between 1024 and 1029) for different configurations of learning sample size and probability of false alarm and is compared to a more classical one which consists of modeling the entire damage indexes distribution by means of Parzen windows. Results show that given a set of data in the healthy state, the effective probability of false alarm obtained using the Peaks Over Threshold method is closer to the desired probability of false alarm than the one obtained using the Parzen-window method, which appears to be more conservative.

Files in this item

Name:
PIMM-SHM-REBILLAT-2017.pdf
Size:
1.916Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Improving Lamb Wave detection for SHM using a dedicated LWDS electronics 
    Communication avec acte
    JAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (NTD, 2019)
    In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ...
  • Laser shock a novel way to generate calibrated delamination in composites: concept and first results 
    Communication avec acte
    GHRIB, Meriem; BERTHE, Laurent; ECAULT, Romain; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (2015)
    Structural Health Monitoring (SHM) has been gaining importance in recent years. SHM aims at providing structures with similar functionality as the biological nervous system and it is organized into four main steps: detection, ...
  • A Probabilistic Multi-class Classifier for Structural Health Monitoring 
    Article dans une revue avec comité de lecture
    URIBE, Juan Sebastian; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (Elsevier, 2015)
    In this paper, a probabilistic multi-class pattern recognition algorithm is developed for damage detection, localization, and quantification in smart mechanical structures. As these structures can face damages of different ...
  • A General Bayesian Framework for Ellipse-based and Hyperbola-based Damage Localisation in Anisotropic Composite Plates 
    Article dans une revue avec comité de lecture
    FENDZI, Claude; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (SAGE Publications, 2016)
    This paper focuses on Bayesian Lamb wave-based damage localization in structural health monitoring of anisotropic composite materials. A Bayesian framework is applied to take account for uncertainties from experimental ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales