Peaks Over Threshold–based detector design for structural health monitoring: Application to aerospace structures
Type
Articles dans des revues avec comité de lectureAuthor
Date
2018Journal
Structural Health Monitoring  an International JournalAbstract
Structural health monitoring offers new approaches to interrogate the integrity of complex structures. The structural health monitoring process classically relies on four sequential steps: damage detection, localization, classification, and quantification. The most critical step of such process is the damage detection step since it is the first one and because performances of the following steps depend on it. A common method to design such a detector consists of relying on a statistical characterization of the damage indexes available in the healthy behavior of the structure. On the basis of this information, a decision threshold can then be computed in order to achieve a desired probability of false alarm. To determine the decision threshold corresponding to such desired probability of false alarm, the approach considered here is based on a model of the tail of the damage indexes distribution built using the Peaks Over Threshold method extracted from the extreme value theory. This approach of tail distribution estimation is interesting since it is not necessary to know the whole distribution of the damage indexes to develop a detector, but only its tail. This methodology is applied here in the context of a composite aircraft nacelle (where desired probability of false alarm is typically between 1024 and 1029) for different configurations of learning sample size and probability of false alarm and is compared to a more classical one which consists of modeling the entire damage indexes distribution by means of Parzen windows. Results show that given a set of data in the healthy state, the effective probability of false alarm obtained using the Peaks Over Threshold method is closer to the desired probability of false alarm than the one obtained using the Parzenwindow method, which appears to be more conservative.
Files in this item
Related items
Showing items related by title, author, creator and subject.

FENDZI, Claude; MOREL, Julien; REBILLAT, Marc; GUSKOV, Mikhail; MECHBAL, Nazih; COFFIGNAL, Gérard (2014)This paper examines an important challenge in ultrasonic structural health monitoring (SHM), which is the problem of the optimal placement of sensors in order to accurately detect and localize damages. The goal of this ...

BALMES, Etienne; GUSKOV, Mikhail; REBILLAT, Marc; MECHBAL, Nazih (2014)— FEM modeling of piezoelectric patches used as actuators and sensors for SHM applications. — Test/analysis correlation of temperature effects in piezoelectric materials and glue — Numerical methods associated with the ...

REBILLAT, Marc; HAJRYA, Rafik; MECHBAL, Nazih (DEStech Publications, Inc., 2013)Structural damages can result in nonlinear dynamical responses. Thus, estimating the nonlinearities generated by damages potentially allows detecting them. In this paper, an original approach called the ES2D (Exponential ...

HMAD, Ouadie; FENDZI, Claude; MECHBAL, Nazih; REBILLAT, Marc (IFAC, 2015)Structural Health Monitoring (SHM) system offers new approaches to interrogate the integrity of structures. However, their reliability has still to be demonstrated an quantified to enable confidence transition from R&D to ...

REBILLAT, Marc; EGE, Kerem; MECHBAL, Nazih; ANTONI, Jérôme (2016)Systems and structures are generally assumed to behave linearly and in a noisefree environment. This is in practice not perfectly the case. First, nonlinear phenomena can appear and second, the presence of noise is ...