• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-scale experimental investigation of the viscous nature of damage in Advanced Sheet Molding Compound (A-SMC) submitted to high strain rates

Article dans une revue avec comité de lecture
Author
ccSHIRINBAYAN, Mohammadali
ccFITOUSSI, Joseph
BOCQUET, Michel
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
SUROWIEC, Benjamin
497223 Plastic Omnium Auto Exterior [Sigmatech]
ccTCHARKHTCHI, Abbas
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/11854
DOI
10.1016/j.compositesb.2016.10.061
Date
2017
Journal
Composites Part B: Engineering

Abstract

This paper aims to present an experimental multi-scale analysis of quasi-static and high strain rate damage behavior of a new formulation of SMC composite (Advanced SMC). In order to study its capability to absorb energy through damage accumulation, Randomly Oriented (RO) and High oriented (HO) A-SMC composites damage has been investigated at both microscopic and macroscopic scales. A specific device has been developed in order to perform Interrupted Dynamic Tensile Tests (IDTT) which allows analyzing the evolution of the microscopic damage mechanisms occurring during rapid tensile tests. Several damage micro-mechanisms have been pointed out. The relative influences of these micro-damage events and their interactions have been related to the macroscopic damage behavior through the definition of microscopic and macroscopic damage indicators. Damage threshold and kinetic have been quantified at various strain rate for different microstructures and loading cases (RO, HO-0 and HO-90). It has been shown at both scales that increasing strain rate leads to an onset of damage initiation together with a reduction of the damage accumulation kinetic. Moreover, the influence of the fiber orientation has been studied in order to emphasize the anisotropic strain rate effect at the fiber-matrix interface scale. The latter was related to the influence of the microstructure of A-SMC composites. Finally, on the basis of the whole experimental results, the microscopic origin of the viscous nature of the damage behavior of A-SMCs composites have been discussed and related to the influence of the strain rate and microstructure.

Files in this item

Name:
LEM3_COMPB_2016_MERAGHNI1.pdf
Size:
2.673Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension 
    Article dans une revue avec comité de lecture
    ccSHIRINBAYAN, Mohammadali; SUROWIEC, Benjamin; BOCQUET, Michel; ccTCHARKHTCHI, Abbas; ccFITOUSSI, Joseph; ccMERAGHNI, Fodil (Elsevier, 2015)
    Advanced Sheet Molding Compound (A-SMC) is a serious composite material candidate for structural automotive parts. It has a thermoset matrix and consists of high weight content of glass fibers (50% in mass) compared to ...
  • Micro and macroscopic characterization of A-SMC under high speed tensile test 
    Conférence invitée
    ccSHIRINBAYAN, Mohammadali; SUROWIEC, Benjamin; BOCQUET, Michel; ccTCHARKHTCHI, Abbas; ccFITOUSSI, Joseph; ccMERAGHNI, Fodil (2015)
    Advanced Sheet Molding Compound (A-SMC) is a serious composite material candidate for structural automotive parts. It has a thermoset matrix and consists of high weight content of glass fibers (50% in mass) compared to ...
  • High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension 
    Article dans une revue avec comité de lecture
    ccSHIRINBAYAN, Mohammadali; ccFITOUSSI, Joseph; ccMERAGHNI, Fodil; SUROWIEC, Benjamin; BOCQUET, Michel; ccTCHARKHTCHI, Abbas (Elsevier, 2015)
    Advanced Sheet Molding Compound (A-SMC) is a serious composite material candidate for structural automotive parts. It has a thermoset matrix and consists of high weight content of glass fibers (50% in mass) compared to ...
  • Effect of a Post-Fatigue Damage on the Residual Dynamic Behavior of Advanced-SMC Composites 
    Article dans une revue avec comité de lecture
    ccSHIRINBAYAN, Mohammadali; ccFITOUSSI, Joseph; ccMERAGHNI, Fodil; FARZANEH, S.; SUROWIEC, Benjamin; ccTCHARKHTCHI, Abbas (Springer Verlag (Germany), 2019)
    The purpose of this article is to investigate the effect of an initial pre-damage induced by a fatigue loading on the tensile dynamic behavior of Advanced Sheet Molding Compounds (A-SMC). Tension-tension fatigue preloading ...
  • Mechanical characterization of a Low Density Sheet Molding Compound (LD-SMC): Multi-scale damage analysis and strain rate effect 
    Article dans une revue avec comité de lecture
    ccSHIRINBAYAN, Mohammadali; ABBASNEZHAD, Navideh; SUROWIEC, Benjamin; ccTCHARKHTCHI, Abbas; ccFITOUSSI, Joseph; ccMERAGHNI, Fodil (Elsevier, 2017)
    This paper presents the results of an overall experimental characterization of the mechanical behavior of a Low Density Sheet Molding Compound (LD-SMC). LD-SMC is a polyester matrix containing mineral charge (CaCO3) ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales