• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanical characterization of a Low Density Sheet Molding Compound (LD-SMC): Multi-scale damage analysis and strain rate effect

Article dans une revue avec comité de lecture
Author
SHIRINBAYAN, Mohammadali
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
FITOUSSI, Joseph
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ABBASNEZHAD, Navideh
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
SUROWIEC, Benjamin
497223 Plastic Omnium Auto Exterior [Sigmatech]
TCHARKHTCHI, Abbas
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/12296
DOI
10.1016/j.compositesb.2017.08.004
Date
2017
Journal
Composites Part B: Engineering

Abstract

This paper presents the results of an overall experimental characterization of the mechanical behavior of a Low Density Sheet Molding Compound (LD-SMC). LD-SMC is a polyester matrix containing mineral charge (CaCO3) reinforced by discontinuous bundles of glass fibers and Hollow Glass Microspheres (HGM). After a description of its specific microstructure using several experimental methods (notably a new ultrasonic method), the overall mechanical response of two microstructure configurations (Randomly Oriented (RO) and Highly oriented (HO)) is analyzed at both macroscopic and microscopic scales in the case of tensile and compression tests. HGMs are homogeneously distributed into the overall volume of the material. At the microscopic scale, in-situ tensile tests inside a SEM and fracture surfaces observations allows analyzing the specific damage mechanisms occurring during tensile and compression loading performed in the mold flow direction (HO-0°) and perpendicularly to it (HO-90°). A strong coupled influence of the presence of the HGM and fibers orientation has been emphasized. The results show that for HO-0° configuration fiber-matrix debonding appears to be the predominant damage mechanism, whereas for HO-90° configuration HGM-matrix debonding appears to be the predominant damage mechanism. High speed tensile tests are achieved using servo-hydraulic test equipment in order to study the strain rate effects (until 80 s−1) on mechanical macroscopic responses of HO-0°, RO and HO-90° samples. Strain rate has an obvious influence on the inelastic properties of LD-SMCs samples for all microstructures particularly on the damage threshold.

Files in this item

Name:
PIMM_C_SHIRINBAYAN_2017.pdf
Size:
4.686Mb
Format:
PDF
Embargoed until:
2018-06-15
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension 
    Article dans une revue avec comité de lecture
    SHIRINBAYAN, Mohammadali; FITOUSSI, Joseph; MERAGHNI, Fodil; SUROWIEC, Benjamin; BOCQUET, Michel; TCHARKHTCHI, Abbas (Elsevier, 2015)
    Advanced Sheet Molding Compound (A-SMC) is a serious composite material candidate for structural automotive parts. It has a thermoset matrix and consists of high weight content of glass fibers (50% in mass) compared to ...
  • Effect of a Post-Fatigue Damage on the Residual Dynamic Behavior of Advanced-SMC Composites 
    Article dans une revue avec comité de lecture
    SHIRINBAYAN, Mohammadali; FITOUSSI, Joseph; MERAGHNI, Fodil; FARZANEH, S.; SUROWIEC, Benjamin; TCHARKHTCHI, Abbas (Springer Verlag (Germany), 2019)
    The purpose of this article is to investigate the effect of an initial pre-damage induced by a fatigue loading on the tensile dynamic behavior of Advanced Sheet Molding Compounds (A-SMC). Tension-tension fatigue preloading ...
  • High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension 
    Article dans une revue avec comité de lecture
    SHIRINBAYAN, Mohammadali; FITOUSSI, Joseph; MERAGHNI, Fodil; SUROWIEC, Benjamin; BOCQUET, Michel; TCHARKHTCHI, Abbas (Elsevier, 2015)
    Advanced Sheet Molding Compound (A-SMC) is a serious composite material candidate for structural automotive parts. It has a thermoset matrix and consists of high weight content of glass fibers (50% in mass) compared to ...
  • Micro and macroscopic characterization of A-SMC under high speed tensile test 
    Conférence invitée
    SHIRINBAYAN, Mohammadali; FITOUSSI, Joseph; MERAGHNI, Fodil; SUROWIEC, Benjamin; BOCQUET, Michel; TCHARKHTCHI, Abbas (2015)
    Advanced Sheet Molding Compound (A-SMC) is a serious composite material candidate for structural automotive parts. It has a thermoset matrix and consists of high weight content of glass fibers (50% in mass) compared to ...
  • Multi-scale experimental investigation of the viscous nature of damage in Advanced Sheet Molding Compound (A-SMC) submitted to high strain rates 
    Article dans une revue avec comité de lecture
    SHIRINBAYAN, Mohammadali; FITOUSSI, Joseph; BOCQUET, Michel; MERAGHNI, Fodil; SUROWIEC, Benjamin; TCHARKHTCHI, Abbas (Elsevier, 2017)
    This paper aims to present an experimental multi-scale analysis of quasi-static and high strain rate damage behavior of a new formulation of SMC composite (Advanced SMC). In order to study its capability to absorb energy ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales